广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (05): 80-87.doi: 10.12052/gdutxb.230198

• 机械工程 • 上一篇    下一篇

风力机叶片截面主刚度系数与横向剪应力分析

王亚迪, 夏鸿建, 李德源   

  1. 广东工业大学 机电工程学院, 广东 广州 510006
  • 收稿日期:2023-12-06 出版日期:2024-09-25 发布日期:2024-09-27
  • 通信作者: 夏鸿建(1978-),男,副教授,博士,主要研究方向为大型风力机气弹稳定性分析与优化,E-mail:hjxia@gdut.edu.cn
  • 作者简介:王亚迪(1999-),男,硕士研究生,主要研究方向为大型风力机气弹稳定性分析与优化,E-mail:w798965304@gmail.com
  • 基金资助:
    2024年广东省海洋经济发展专项(GDNRC[2024]30)

An Analysis of Main Stiffness Coefficient and Transverse Shear Stress of Wind Turbine Blade Section

Wang Ya-di, Xia Hong-jian, Li De-yuan   

  1. School of Electromechanical Engineering, Guangdong University of Techonlogy, Guangzhou 510006, China
  • Received:2023-12-06 Online:2024-09-25 Published:2024-09-27

摘要: 针对风力机复合材料叶片弯曲与扭转刚度计算,以及当叶片在横向剪力作用下对空心薄壁截面上剪应力的数值计算方法进行研究。现代风力机叶片呈细长扭曲形,翼型截面为薄壁且内部拓扑构型复杂,材料具有各向异性。在应用各类梁模型进行叶片气弹计算和强度校核等力学分析时,叶片截面的刚度系数和截面剪应力分布是必需参数。基于复合材料薄壁结构层合理论和加权平均方法,结合Bredt-Batho剪力理论,考虑了复合材料叶片的剪切腹板效应和翘曲效应,建立了复合材料层合板等效弹性常数与截面刚度系数数值分析算法;根据弹性力学板壳理论,考虑横向剪切和截面翘曲对截面变形的影响,建立了横向剪力引起的剪力流数值计算方法,并开发了相关算法的Matlab程序。分析10 MW风力机叶片主刚度系数和剪力流分布,并对比文献结果,验证了模型的正确性和算法的有效性。

关键词: 风力机叶片, 复合材料, 等效弹性常数, 层合理论, 剪力流

Abstract: This paper studies the calculation of bending and torsional stiffness of wind turbine composite blades, as well as the numerical calculation method of shear stress on the hollow thin-walled section when the blade is subjected to transverse shear force. Modern wind turbine blades are slender and twisted, with thin-walled airfoil sections and complex internal topological configurations, and the materials are anisotropic. When applying various beam models for mechanical analysis such as blade aeroelastic calculation and strength check, the stiffness coefficient of the blade section and the calculation results of the section shear stress distribution are required parameters. Based on the composite thin-walled structure lamination theory and weighted average method, combined with the Bredt-Batho shear theory, a numerical analysis algorithm for the equivalent elastic constant and section stiffness coefficient of the composite laminate was established, taking into account the shear web effect of the composite blade. and warping effects; based on the plate and shell theory of elastic mechanics and considering the influence of transverse shear and section warpage on section deformation, a numerical calculation method for shear flow caused by transverse shear was established; a Matlab program for related algorithms was developed. By analyzing the main stiffness coefficient and shear flow distribution of a 10 MW wind turbine blade and comparing the literature results, the correctness of the model and the effectiveness of the algorithm are verified.

Key words: wind turbine blade, composite, equivalent elastic constant, classical lamination theory (CLT), shear flow

中图分类号: 

  • TK83
[1] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展[J]. 力学学报, 2017, 49(3): 487-506.
LIU R H, XUE J H. Development of nonlinear mechanics for laminated composite plates and shells [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 487-506.
[2] 曲晓奇. 考虑非线性几何刚度大型浮式风力机叶片动力响应分析[D]. 天津: 天津大学, 2021.
[3] LIN W, XIONG W L, LIANG G G, et al. Mathematical model for calculating cross-sectional properties of modern wind turbine composite blades [J]. Renewable Energy, 2014, 64: 52-60.
[4] LIN W, XIONG W L, ATHANASIOS K. State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 195-210.
[5] BLASQUES J P. User’s manual for BECAS[R]. Denmark: Technical University of Denmark, 2012. https://www.osti.gov/etdeweb/servlets/purl/1040602.
[6] REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis[R]. Boca Raton: CRC, 2003.
[7] 郝际平, 钟炜辉. 薄壁杆件的弯曲与扭转[M]. 北京: 高等教育出版社, 2006.
[8] 牛牧华, 陈程, 李倩. 复合材料叶片截面刚度对风力机叶片气弹响应的敏感性研究[J]. 太阳能学报, 2023, 44(6): 461-468.
NIU M H, CHEN C, LI Q. Study on the sensitivity of composite blade cross-section stiffness to the aeroelastic response of wind turbine blades [J]. Journal of Solar Energy, 2023, 44(6): 461-468.
[9] CHRISTIAN B, FREDERIK Z, ROBERT B, et al. Description of the DTU 10 MW reference wind turbine [R]. Denmark: DTU Wind Energy Report-I-0092, 2013.
[10] 张达, 冯荣欣. 复合材料层压板双轴载荷下力学行为研究[C]//中国航空学会. 第六届中国航空科学技术大会论文集. 北京: 北京航空航天大学出版社, 2023: 5.
[11] AZIZUL I, ABDUL H, TERRY B, et al. An efficient model for laminated composite thin-walled beams of open or closed cross-section and with or without in filled materials [J]. Composite Structures, 2021, 256(112998): 1-16.
[12] PILKEY W D. Analysis and design of elastic beams[M]. United States: Wiley Online Library, 2002.
[13] 卢秉喜. 风力发电机复合材料叶片结构动力学特性研究[D]. 兰州: 兰州理工大学, 2023.
[14] SHAMA M. Torsion and shear stresses in ships[M]. Alexandria: Springer, 2010.
[15] 董新洪, 孙鹏文, 张兰挺, 等. 风力机叶片铺层参数多目标优化设计[J]. 机械工程学报, 2022, 58(4): 165-173.
DONG X H, SUN P W, ZHANG L T, et al. Multi objective optimization design of wind turbine blade layer parameters [J]. Journal of Mechanical Engineering, 2022, 58(4): 165-173.
[1] 李兆艳, 谢小柱, 赖庆, 黄亚军. 高重频飞秒激光加工碳纤维复合材料的热影响研究[J]. 广东工业大学学报, 2024, 41(05): 97-104.
[2] 翟可仪, 叶明, 张耀文, 姜海波, 肖杰, 梅塨镛, 黄梓槺. ECC与钢筋黏结性能试验研究[J]. 广东工业大学学报, 2022, 39(02): 120-124.
[3] 刘羽飞, 刘运红, 周延周. 光学测量玻璃纤维增强复合材料表面离面位移场分布[J]. 广东工业大学学报, 2015, 32(2): 109-113.
[4] 李林升; 陈先朝; 黎沃光; 余业球; . 自生复合Cu-Cr合金定向凝固新方法[J]. 广东工业大学学报, 2005, 22(2): 12-15.
[5] 贺春华; 何铁军; . 铸态硅酸铝短纤维/ZL109 复合材料性能的实验研究[J]. 广东工业大学学报, 1998, 15(4): 48-53.
[6] 胡丽萍. PA66/g-PP/玻纤复合材料在分接开关中的应用研究[J]. 广东工业大学学报, 1996, 13(2): 58-62.
[7] 周彦豪, 张立群, 李晨, 吴卫东, 陈涛, 李东红. 短纤维-橡胶复合材料开发研究的新进展[J]. 广东工业大学学报, 1995, 12(4): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!