广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 71-77.doi: 10.12052/gdutxb.200014
涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖
Tu Jun-ping, Huang Ji-kang, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying
摘要: R245fa是有机朗肯循环系统(Organic Rankine Cycle,ORC)最常用的工质之一,研究其传热流动特性对于指导R245fa的ORC设计和运行有重要价值。搭建了有机工质单管传热流动测试台并开展了水平光滑管内R245fa在90℃下的沸腾传热实验研究。实验获得了平均干度、质量流率对平均流动沸腾传热系数和壁温沿管程分布的影响规律,并分析了原因。将实验结果与3个经典传热关联式预测结果进行了对比,结果显示平均偏差分别为38%、39%、20%。R245fa高温蒸发实验结果可为进一步修正传热关联式提供基础数据库,并用于指导热力循环工程实践。
中图分类号:
[1] KUNDU A, KUMAR R, GUPTA A. Heat transfer characteristics and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube [J]. Experimental Thermal and Fluid Science, 2014, 57: 344-352. [2] ZHANG J, MARIA M E and HAGLIND F. General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes [J]. Applied Thermal Engineering, 2019, 150: 824-839. [3] ZHANG Y, TIAN R, DAI X Y, et al. Experimental study of R134a flow boiling in a horizontal tube for evaporator design under typical organic Rankine cycle pressures [J]. International Journal of Heat and Fluid Flow, 2018, 71: 210-219. [4] LI L, GE Y T, LUO X, et al. Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations [J]. Applied Thermal Engineering, 2018, 136: 708-717. [5] GUO C, WANG J, DU X, et al. Experimental flow boiling characteristics of R134a/R245fa mixture inside smooth horizontal tube [J]. Applied Thermal Engineering, 2016, 103: 901-908. [6] LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation [J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766. [7] ABADI G B, MOON C, KIM K C. Effect of gravity vector on flow boiling heat transfer, flow pattern map, and pressure drop of R245fa refrigerant in mini tubes [J]. International Journal of Multiphase Flow, 2016, 83: 202-216. [8] TIBIRICA C B, RIBATSKI G. Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube [J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12): 2459-2468. [9] SAITOH S, DAIGUJI H, HIHARA E. Correlation for boiling heat transfer of R134a in horizontal tubes including effect of tube diameter [J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26): 5215-5225. [10] ZHANG L, HIHARA E, SAITO T, et al. Boiling heat transfer of a ternary refrigerant mixture inside a horizontal smooth tube [J]. International Journal of Heat and Mass Transfer, 1997, 40(9): 2009-2017. [11] TIBIRICA C B, RIBATSKI G. Two-phase frictional pressure drop and flow boiling heat transfer for R245fa in a 2.32-mm tube [J]. Heat Transfer Engineering, 2011, 32(13-14): 1139-1149. [12] DANG C, JIA L, PENG Q, et al. Experimental and analytical study on nucleate pool boiling heat transfer of R134a/R245fa zeotropic mixtures [J]. International Journal of Heat and Mass Transfer, 2018, 119: 508-522. [13] XU Y, FANG X D, LI G H, et al. An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations [J]. International Journal of Heat and Mass Transfer, 2016, 92: 1143-1157. [14] DORAO C A, BLANCOFERNANDEZ O, FERNANDINO M. Experimental study of horizontal flow boiling heat transfer of R134a at a saturation temperature of 18.6 ℃ [J]. Journal of Heat Transfer, 2017, 139(11): 111510. [15] HOSSAIN M A, ONAKA Y, MIYARA A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A [J]. International Journal of Refrigeration, 2012, 35(4): 1143-1157. [16] LILLO G, MASTRULLO R, MAURO A W, et al. Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A [J]. International Journal of Refrigeration, 2019, 97: 143-156. [17] LONGO G A, MANCIN S, RIGHETTI G, et al. HFC32 and HFC410A flow boiling inside a 4 mm horizontal smooth tube [J]. International Journal of Refrigeration, 2015, 61: 12-22. [18] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow [J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. [19] YOSHIDA S, MORI H, HONG H, et al. Prediction of heat transfer coefficient for refrigerants flowing in horizontal evaporator tubes [J]. Transcripts of the Japanese Association of Refrigeration, 1994, 11(1): 67-78. |
[1] | 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106. |
[2] | 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134. |
[3] | 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98. |
[4] | 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120. |
[5] | 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80. |
[6] | 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110. |
|