广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 104-110.doi: 10.12052/gdutxb.200017
• 综合研究 • 上一篇
何淋, 柯秀芳, 张国庆, 李新喜
He Lin, Ke Xiu-fang, Zhang Guo-qing, Li Xin-xi
摘要: 一种低温导热硅胶/相变材料复合组件在电池模组中的使用, 有效地解决了相变材料由于液化而发生的析出问题, 同时保持相变材料高导热与高潜热值。由于导热硅胶片具有一定的弹性与黏性, 使得整个系统具有一定缓冲作用, 减少了相变材料与电池之间的接触热阻, 进一步提高了整个系统的散热性能。在3C放电倍率下, 相比自然冷却方式的66.63 ℃, 强制风冷方式的57.99 ℃, PCM(Phase Change Material)冷却方式的最高温度为44.78 ℃, 分别下降了32.8%、22.78%; 温差为3.70 ℃, 满足电池模组的最大温差的要求。在3C放电倍率的循环中, PCM冷却方式的电池模组在3次循环后的温度为51.45 ℃, 在安全温度范围内。
中图分类号:
[1] 梁昌杰. 混合动力车用镶氨电池组散热性能CFD仿真与试验研究[D]. 重庆:重庆大学, 2010. [2] RAMANDI M Y, DINCER I, NATERER G F. Heat transfer and thermal management of electric vehicle batteries with phase change materials [J]. Heat & Mass Transfer, 2011, 47(7): 777-788. [3] 张国庆, 马莉, 张海燕, 等. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4. ZHANG G Q, MA L, ZHANG H Y, et al. Heat generation behavior of HEV battery and its thermal management technology [J]. Journal of Guangdong University of Technology, 2008, 25(1): 1-4. [4] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: a review [J]. Journal of Power Sources, 2016, 306: 178-192. [5] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1): 269-281. [6] JAGUEMONT J, BOULON L, DUBE Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures [J]. Applied Energy, 2016, 164: 99-114. [7] WEI L, LI Z, DENG Y, et al. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges [J]. Energy Storage Materials, 2016, 2: 107-138. [8] TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles [J]. Renewable & Sustainable Energy Reviews, 2013, 20(4): 82-102. [9] ZHANG G S, CAO L, GE S, et al. Situ measurement of radial temperature distributions in cylindrical Li-ion cells [J]. Electrochem Soc, 2014, 16(1): 1499-1507. [10] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow [J]. International Journal of Heat & Mass Transfer, 2015, 83: 164-172. [11] 黄倩. 锂离子电池的热效应及其安全性能的研究[D]. 上海: 复旦大学, 2007. [12] 李哲. 纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学, 2011. [13] 王子缘, 张国庆, 高冠勇, 等. 18650圆柱形电芯的产热行为研究[J]. 广东工业大学学报, 2017, 34(1): 45-49. WANG Z Y, ZHANG G Q, GAO G Y, et al. A study of heat generation behavior of 18650 cylindrical battery [J]. Journal of Guangdong University of Technology, 2017, 34(1): 45-49. [14] RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II.Capacity fade analysis [J]. Journal of Power Sources, 2002, 112(2): 614-620. [15] GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life [J]. Journal of Power Sources, 2014, 252: 8-13. [16] SMITH K, CHAO Y W. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662-673. [17] 刘仲明. 锂离子电池组不一致性及热管理的模拟研究[D]. 天津:天津大学, 2017. [18] 刘振军, 林国发, 秦大同, 等. 电动汽车铿电池组温度场研究及其结构优化[J]. 汽车工程, 2012, 34(1): 80-84. LIU Z J, LIN G F, QIN D T, et al. Temperature field study and structural optimization of his battery pack for electric vehicle [J]. Automotive Engineering, 2012, 34(1): 80-84. [19] HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material [J]. Electrochem Soc, 2000, 147: 3231-3236. [20] 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157. YU R B. Application of phase change materials in thermal management of power batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 1148-1157. [21] 马先锋, 邹得球, 刘小诗, 等. 动力电池热管理用相变材料的研究进展[J]. 化工新型材料, 2017(9): 23-25. MA X F, ZOU D Q, LIU X S, et al. Research progress of phase change materials for thermal management of power cells [J]. New Materials for Chemical Industry, 2017(9): 23-25. [22] KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2015, 183(1): 370-375. [23] RAO Z H, WANG S F, ZHANG G Q, et al. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion & Management, 2011, 52(12): 3408-3414. [24] ASHIMA V, SUMANTH S, DIBAKAR R. A comparative study on battery thermal management using phase change material (PCM) [J]. Thermal Science and Engineering Progress, 2019, 11: 74-83. [25] CHIH Y W, YU S L, CHEN H L. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management [J]. Journal of Power Sources, 2009, 189(2): 1100-1105. [26] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electricscooters experimental validation [J]. Journal of Power Sources, 2005, 142(1): 345-353. [27] SHASHANK A, AJAY K, SHEN W X. A Novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse [J]. Journal of Power Sources, 2018, 378: 759-775. [28] ABID H, IRFAN H. ABIDI B, et al Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials [J]. International Journal of Thermal Sciences, 2018, 124: 23-35. [29] QU Z G, LI W Q, TAO W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913. [30] CHEN K, YU X, TIAN C, et al. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage [J]. Energy Conversion & Management, 2014, 77(8): 13-21. [31] LI Z, SUN W G, WANG G, et al. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite [J]. Solar Energy Materials & solar Cells, 2014, 128(9): 447-455. [32] MIN L, WU Z S, TAN J M. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method [J]. Applied Energy, 2012, 92(2): 456-461. |
[1] | 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106. |
[2] | 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134. |
[3] | 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98. |
[4] | 崔铁军, 李莎莎. 人工智能与生产过程中本质安全的实现[J]. 广东工业大学学报, 2021, 38(06): 84-90. |
[5] | 涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(06): 71-77. |
[6] | 张盼望, 熊锐, 吴坚, 张中威, 纪佳圳, 李沛焕. 低压EGR系统对缸内直喷发动机性能影响的研究[J]. 广东工业大学学报, 2020, 37(05): 82-86. |
[7] | 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120. |
[8] | 黄金, 周华, 刘楷钊, 萧辉武, 胡艳鑫. 燃气冷却式温差发电烤炉的实验研究[J]. 广东工业大学学报, 2020, 37(02): 53-59. |
[9] | 吴家湖, 熊华, 宗睿, 赵曜, 周贤中. 基于循环神经网络的目标转弯机动类型识别[J]. 广东工业大学学报, 2020, 37(02): 67-73. |
[10] | 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80. |
[11] | 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110. |
[12] | 梁曰巍, 刘丽孺, 綦戎辉, 黄宇, 李志生. 膜式溶液除湿空调与二氧化碳跨临界循环热泵一体化系统性能研究[J]. 广东工业大学学报, 2018, 35(01): 61-66. |
[13] | 程甜, 刘丽孺, 王璋元, 王晓霞, 丁泽智. 应用于温湿度独立控制空调系统中的CO2跨临界循环热泵系统的模拟研究[J]. 广东工业大学学报, 2017, 34(01): 40-44. |
[14] | 谢泽扬,黄金,李定昌,王海. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(02): 66-70. |
[15] | 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49. |
|