广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (01): 104-110.doi: 10.12052/gdutxb.200017

• 综合研究 • 上一篇    

导热硅胶/相变材料复合组件在电池热管理中的应用

何淋, 柯秀芳, 张国庆, 李新喜   

  1. 广东工业大学 材料与能源学院,广东 广州 510006
  • 收稿日期:2020-01-31 出版日期:2021-01-25 发布日期:2020-12-21
  • 通信作者: 柯秀芳(1967-),女,副教授,硕士生导师,主要研究方向为储能技术的应用,E-mail:Kexiufang@126.com E-mail:Kexiufang@126.com
  • 作者简介:何淋(1995-),男,硕士研究生,主要研究方向为相变材料在电池热管理系统的应用
  • 基金资助:
    国家自然科学基金资助项目(21875046);佛山市科技创新资助项目(2017IT100143)

Application of Thermal Conductive Silica Gel/Phase Change Material Composite Components in Thermal Management of Batteries

He Lin, Ke Xiu-fang, Zhang Guo-qing, Li Xin-xi   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-31 Online:2021-01-25 Published:2020-12-21

摘要: 一种低温导热硅胶/相变材料复合组件在电池模组中的使用, 有效地解决了相变材料由于液化而发生的析出问题, 同时保持相变材料高导热与高潜热值。由于导热硅胶片具有一定的弹性与黏性, 使得整个系统具有一定缓冲作用, 减少了相变材料与电池之间的接触热阻, 进一步提高了整个系统的散热性能。在3C放电倍率下, 相比自然冷却方式的66.63 ℃, 强制风冷方式的57.99 ℃, PCM(Phase Change Material)冷却方式的最高温度为44.78 ℃, 分别下降了32.8%、22.78%; 温差为3.70 ℃, 满足电池模组的最大温差的要求。在3C放电倍率的循环中, PCM冷却方式的电池模组在3次循环后的温度为51.45 ℃, 在安全温度范围内。

关键词: 聚乙二醇, 接触热阻, 散热性能, 温差, 循环

Abstract: The application of a low-temperature thermal conductive silica gel/phase change material composite module in the battery module can effectively solve the problem of phase change material precipitation due to liquefaction, while maintaining the high thermal conductivity and high latent heat value of phase change material. Due to certain elasticity and viscosity of heat-conducting silica gel sheet, the whole system has a certain buffering effect, which reduces the contact thermal resistance between phase-change material and battery, and further improves the heat dissipation performance of the whole system. At 3C discharge rate, the temperature of forced air cooling was 57.99 ℃ compared with 66.63 ℃ of natural cooling. The maximum temperature of PCM(Phase Change Material) cooling mode is 44.78 ℃ and the maximum temperature difference is 3.70 ℃. They were down 32.8 percent and 22.78 percent, respectively. In the 3C discharge rate cycle, the PCM cooling mode battery module has a temperature of 51.45 ℃ after three cycles, which is still within the safe temperature rang.

Key words: polyethylene glycol, contact thermal resistance, heat dissipation performance, temperature difference, cycle

中图分类号: 

  • TM911.3
[1] 梁昌杰. 混合动力车用镶氨电池组散热性能CFD仿真与试验研究[D]. 重庆:重庆大学, 2010.
[2] RAMANDI M Y, DINCER I, NATERER G F. Heat transfer and thermal management of electric vehicle batteries with phase change materials [J]. Heat & Mass Transfer, 2011, 47(7): 777-788.
[3] 张国庆, 马莉, 张海燕, 等. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.
ZHANG G Q, MA L, ZHANG H Y, et al. Heat generation behavior of HEV battery and its thermal management technology [J]. Journal of Guangdong University of Technology, 2008, 25(1): 1-4.
[4] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: a review [J]. Journal of Power Sources, 2016, 306: 178-192.
[5] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1): 269-281.
[6] JAGUEMONT J, BOULON L, DUBE Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures [J]. Applied Energy, 2016, 164: 99-114.
[7] WEI L, LI Z, DENG Y, et al. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges [J]. Energy Storage Materials, 2016, 2: 107-138.
[8] TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles [J]. Renewable & Sustainable Energy Reviews, 2013, 20(4): 82-102.
[9] ZHANG G S, CAO L, GE S, et al. Situ measurement of radial temperature distributions in cylindrical Li-ion cells [J]. Electrochem Soc, 2014, 16(1): 1499-1507.
[10] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow [J]. International Journal of Heat & Mass Transfer, 2015, 83: 164-172.
[11] 黄倩. 锂离子电池的热效应及其安全性能的研究[D]. 上海: 复旦大学, 2007.
[12] 李哲. 纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学, 2011.
[13] 王子缘, 张国庆, 高冠勇, 等. 18650圆柱形电芯的产热行为研究[J]. 广东工业大学学报, 2017, 34(1): 45-49.
WANG Z Y, ZHANG G Q, GAO G Y, et al. A study of heat generation behavior of 18650 cylindrical battery [J]. Journal of Guangdong University of Technology, 2017, 34(1): 45-49.
[14] RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II.Capacity fade analysis [J]. Journal of Power Sources, 2002, 112(2): 614-620.
[15] GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life [J]. Journal of Power Sources, 2014, 252: 8-13.
[16] SMITH K, CHAO Y W. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662-673.
[17] 刘仲明. 锂离子电池组不一致性及热管理的模拟研究[D]. 天津:天津大学, 2017.
[18] 刘振军, 林国发, 秦大同, 等. 电动汽车铿电池组温度场研究及其结构优化[J]. 汽车工程, 2012, 34(1): 80-84.
LIU Z J, LIN G F, QIN D T, et al. Temperature field study and structural optimization of his battery pack for electric vehicle [J]. Automotive Engineering, 2012, 34(1): 80-84.
[19] HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material [J]. Electrochem Soc, 2000, 147: 3231-3236.
[20] 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157.
YU R B. Application of phase change materials in thermal management of power batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 1148-1157.
[21] 马先锋, 邹得球, 刘小诗, 等. 动力电池热管理用相变材料的研究进展[J]. 化工新型材料, 2017(9): 23-25.
MA X F, ZOU D Q, LIU X S, et al. Research progress of phase change materials for thermal management of power cells [J]. New Materials for Chemical Industry, 2017(9): 23-25.
[22] KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2015, 183(1): 370-375.
[23] RAO Z H, WANG S F, ZHANG G Q, et al. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion & Management, 2011, 52(12): 3408-3414.
[24] ASHIMA V, SUMANTH S, DIBAKAR R. A comparative study on battery thermal management using phase change material (PCM) [J]. Thermal Science and Engineering Progress, 2019, 11: 74-83.
[25] CHIH Y W, YU S L, CHEN H L. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management [J]. Journal of Power Sources, 2009, 189(2): 1100-1105.
[26] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electricscooters experimental validation [J]. Journal of Power Sources, 2005, 142(1): 345-353.
[27] SHASHANK A, AJAY K, SHEN W X. A Novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse [J]. Journal of Power Sources, 2018, 378: 759-775.
[28] ABID H, IRFAN H. ABIDI B, et al Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials [J]. International Journal of Thermal Sciences, 2018, 124: 23-35.
[29] QU Z G, LI W Q, TAO W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913.
[30] CHEN K, YU X, TIAN C, et al. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage [J]. Energy Conversion & Management, 2014, 77(8): 13-21.
[31] LI Z, SUN W G, WANG G, et al. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite [J]. Solar Energy Materials & solar Cells, 2014, 128(9): 447-455.
[32] MIN L, WU Z S, TAN J M. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method [J]. Applied Energy, 2012, 92(2): 456-461.
[1] 危由兴, 罗向龙, 胡凌锋, 陈健勇, 梁颖宗, 杨智, 陈颖. 基于时间序列聚合的有机朗肯循环系统优化方法[J]. 广东工业大学学报, 2022, 39(06): 98-106.
[2] 罗俊伟, 罗向龙, 郑晓生, 陈健勇, 梁颖宗, 杨智, 陈颖. 有机朗肯循环系统换热设备仿真研究[J]. 广东工业大学学报, 2022, 39(04): 128-134.
[3] 梁俊伟, 罗向龙, 杨智, 梁颖宗, 陈健勇, 陈颖. 基于PC-SAFT的混合工质筛选与有机朗肯循环系统优化[J]. 广东工业大学学报, 2022, 39(02): 91-98.
[4] 崔铁军, 李莎莎. 人工智能与生产过程中本质安全的实现[J]. 广东工业大学学报, 2021, 38(06): 84-90.
[5] 涂俊平, 黄计康, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 水平光滑管内R245fa轴向均匀沸腾传热特性实验研究[J]. 广东工业大学学报, 2020, 37(06): 71-77.
[6] 张盼望, 熊锐, 吴坚, 张中威, 纪佳圳, 李沛焕. 低压EGR系统对缸内直喷发动机性能影响的研究[J]. 广东工业大学学报, 2020, 37(05): 82-86.
[7] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[8] 黄金, 周华, 刘楷钊, 萧辉武, 胡艳鑫. 燃气冷却式温差发电烤炉的实验研究[J]. 广东工业大学学报, 2020, 37(02): 53-59.
[9] 吴家湖, 熊华, 宗睿, 赵曜, 周贤中. 基于循环神经网络的目标转弯机动类型识别[J]. 广东工业大学学报, 2020, 37(02): 67-73.
[10] 王羽鹏, 罗向龙, 梁俊伟, 陈健勇, 杨智, 陈颖. 有机朗肯循环系统工质设计与系统参数的同步优化[J]. 广东工业大学学报, 2020, 37(01): 69-80.
[11] 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110.
[12] 梁曰巍, 刘丽孺, 綦戎辉, 黄宇, 李志生. 膜式溶液除湿空调与二氧化碳跨临界循环热泵一体化系统性能研究[J]. 广东工业大学学报, 2018, 35(01): 61-66.
[13] 程甜, 刘丽孺, 王璋元, 王晓霞, 丁泽智. 应用于温湿度独立控制空调系统中的CO2跨临界循环热泵系统的模拟研究[J]. 广东工业大学学报, 2017, 34(01): 40-44.
[14] 谢泽扬,黄金,李定昌,王海. 聚光太阳电池联合温差发电系统实验研究[J]. 广东工业大学学报, 2016, 33(02): 66-70.
[15] 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!