广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 78-84.doi: 10.12052/gdutxb.200178
李诀1,2, 邹大鹏1, 王高杰2, 任勇3
Li Jue1,2, Zou Da-peng1, Wang Gao-jie2, Ren Yong3
摘要: 农用运输自动导引车(Automatic Guided Vehicle, AGV), 作为农业高效、绿色、自动化运输的机械设备, 以其低成本、轻型化的设计, 成为现代农业机械化的一个重要发展方向。为此, 针对农业大棚环境, 设计一款基于磁导航的农用运输AGV。对该AGV的运载力进行核算, 确定其工作能力, 结合设计的磁导航模块, 对AGV进行了运动学建模。应用模糊PID控制算法, 对AGV的驱动速度进行仿真与实验, 结果表明AGV能够在4 s内完成速度的控制响应, 并最终做到相对稳定运行, 速度误差小于5%。设计分段模糊PID控制算法, 对AGV的循迹导引进行仿真与实验, 结果表明在不同驱动速度下AGV都能够调节与导航磁条的相对位置误差。稳定运行时, 其相对位置误差保持在±7.5 mm以内。
中图分类号:
[1] YU S Y, YE C L, LIU H J, et al. Development of an omnidirectional automated guided vehicle with MY3 wheels [J]. Perspectives in Science, 2016, 7: 364-368. [2] 张辰贝西, 黄志球. 自动导航车(AGV)发展综述[J]. 中国制造业信息化, 2010, 39(1): 53-59. ZHANG C B X, HUANG Z Q. Evolution summarization of automated guided vehicles (AGV) [J]. Machine Design and Manufacturing Engineering, 2010, 39(1): 53-59. [3] 刘明实, 胡祎骁, 罗心皓. 基于农业运输的综合问题分析[J]. 经贸实践, 2018(17): 38. LIU M S, HU Y X, LUO X H. Analysis of comprehensive problems based on agricultural transportation [J]. Economic & Trade, 2018(17): 38. [4] 孙晓. 轻型电动农用运输机械发展现状和趋势[J]. 江苏农机化, 2012(4): 26-27. SUN X. Development status and trend of light electric agricultural transport machinery [J]. Jiangsu Agricultural Mechanization, 2012(4): 26-27. [5] 邓文博, 万红珍. 科技创新、农业机械化对广东农业经济增长的影响[J]. 五邑大学学报(社会科学版), 2020, 22(4): 67-71. DENG W B, WAN H Z. The impact of science and technology innovation and agricultural mechanization on agricultural economic growth in Guangdong province [J]. Journal of Wuyi University (Social Sciences Edition), 2020, 22(4): 67-71. [6] 陈之群, 曹雪, 胡晓丽, 等. 大棚马铃薯套种茄子3次收获高效栽培技术[J]. 中国蔬菜, 2018(5): 101-103. CHEN Z Q, CAO X, HU X L, et al. High efficient cultivation techniques of potato interplanting with eggplant in greenhouse [J]. China Vegetables, 2018(5): 101-103. [7] TAKESHIMA H, HATZENBUEHLER P L, EDEH H O. Effects of agricultural mechanization on economies of scope in crop production in Nigeria [J]. Agricultural Systems, 2020, 177: 102691. [8] 蒲宝山, 陈永快, 王涛, 等. 自动导航车技术发展状况及在农业领域的应用及前景展望[J]. 江苏农业科学, 2020, 48(1): 61-65. PU B S, CHEN Y K, WANG T, et al. Development status of automated guided vehicle technology and its application and prospect in agriculture [J]. Jiangsu Agricultural Sciences, 2020, 48(1): 61-65. [9] BELL J, MACDONALD B A, AHN H S, et al. An analysis of automated guided vehicle standards to inform the development of mobile orchard robots [J]. IFAC-PapersOnLine, 2016, 49(16): 475-480. [10] 赵晨宇, 陈息坤. 差速转向农业专用AGV小车的设计与模糊控制研究[J]. 农机化研究, 2016, 38(11): 123-127. ZHAO C Y, CHEN X K. Study on fuzzy control of an agricultural dedicated AGV with differential steering [J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 123-127. [11] 贺坤. 基于航姿与磁导航传感器融合的四轮转向AGV路径跟踪研究[D]. 镇江: 江苏大学, 2018. [12] 罗远杰, 陈息坤, 高艳霞. 现代农业自动化AGV小车的设计与模糊控制研究[J]. 工业控制计算机, 2015, 28(12): 68-71. LUO Y J, CHEN X K, GAO Y X. Study on fuzzy control of AGV used in automation of modern agriculture [J]. Industrial Control Computer, 2015, 28(12): 68-71. [13] KOSTOV M, KOSTOVA V, MARKOSKA R. AGV guidance system simulations with a programmable robotics kit [J]. International Journal of Reasoning-based Intelligent Systems, 2015, 7(1/2): 42-46. [14] 尚婕, 姜文刚, 蔡蓝图. 差速转向的农用自动引导小车控制系统设计[J]. 江苏科技大学学报(自然科学版), 2011, 25(5): 453-456. SHANG J, JIANG W G, CAI L T. Design of control system of agricultural automatic guided vehicle with differential steering [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2011, 25(5): 453-456. [15] 田丽芳. 基于纯滚动转向的采摘机器人轮式AGV系统设计与试验研究[D]. 镇江: 江苏大学, 2016. [16] 王锋. 丘陵山地果园动力底盘的坡地通过性研究[D]. 重庆: 西南大学, 2020. [17] 肖全. 面向3C自动化生产线的AGV结构设计与控制研究[D]. 广州: 广东工业大学, 2018. [18] 鲍金. 基于PID算法的双轮差动式移动机器人定位和导航研究[D]. 沈阳: 东北大学, 2008. [19] 叶甲秋. 自动导向小车(AGV)驱动系统辨识与动态特性分析[D]. 南京: 南京航空航天大学, 2010. [20] ZHANG J Y. PID control realization of drying system of the finishing line based on MCGS and PLC[C]//2020 2nd International Conference on Applied Machine Learning and Data Science (ICAMLDS 2020). Chengdu: IOP Publishing, 2020, 1629: 012015. [21] LUO K. Investigation on machinery control system based on fuzzy PID control technology [J]. Applied Mechanics and Materials, 2012, 1999: 130-134. [22] 马广志, 吴伟, 党国栋. 基于Simulink的履带机器人路径追踪仿真[J]. 机械研究与应用, 2017, 30(6): 77-78. MA G Z, WU W, DANG G D. Simulation of tracked robot tracking path based on the simulink [J]. Mechanical Research & Application, 2017, 30(6): 77-78. |
[1] | 郭心德, 丁宏强. 离散制造智能工厂场景的AGV路径规划方法[J]. 广东工业大学学报, 2021, 38(06): 70-76. |
[2] | 曾振华, 郑汇峰, 祝玉杰, 罗志勇. 多旋翼无人机自主精准降落的控制系统研究[J]. 广东工业大学学报, 2020, 37(01): 87-94. |
[3] | 曾繁武, 熊锐, 吴坚, 杜锡滔, 朱敏思. 能量平衡模型的涡轮增压器控制[J]. 广东工业大学学报, 2018, 35(01): 56-60. |
[4] | 吴平景, 王银河, 陈浩广. 基于改进递推预测误差神经网络算法的极点配置PID控制方法[J]. 广东工业大学学报, 2015, 32(04): 112-117. |
[5] | 杜军特, 李扬. 参数自整定模糊PID控制方法及其在漆包机中的应用[J]. 广东工业大学学报, 2014, 31(2): 58-63. |
[6] | 熊家秦,熊锐,吴坚,陈东兴,李鑫. 增量式PID怠速控制策略在发动机上的应用[J]. 广东工业大学学报, 2013, 30(3): 109-111. |
[7] | 高子林,王银河,石炳杰. 基于自适应模糊逻辑系统的一类非线性系统跟踪控制设计[J]. 广东工业大学学报, 2012, 29(4): 77-81. |
[8] | 李岚,金朝永. 一类多变量不确定非线性系统的自适应模糊监督控制[J]. 广东工业大学学报, 2012, 29(2): 79-84. |
[9] | 卢萍, 金朝永. 收敛速度;误差迭代;神经网络;仿真; PID控制[J]. 广东工业大学学报, 2011, 28(4): 55-58. |
[10] | 李凌宇, 郭贵法, 许锦标. 基于模拟退火遗传算法的PID参数整定与优化[J]. 广东工业大学学报, 2010, 27(2): 80-83. |
[11] | 叶玮琼; 余永权;. 液压伺服系统中模糊-滑模控制器的设计及应用[J]. 广东工业大学学报, 2008, 25(2): 74-77. |
[12] | 谭远强; 王福龙; 李伶俐; . 基于模糊控制的快速控制算法[J]. 广东工业大学学报, 2008, 25(2): 51-53. |
[13] | 刘洋; 王钦若; . 基于内模控制的PID参数整定及仿真[J]. 广东工业大学学报, 2008, 25(1): 66-68. |
[14] | 刘娜; 汪仁煌; 龚雄文; 庞然; . 薄膜透气性测试中基于半导体的恒温控制[J]. 广东工业大学学报, 2008, 25(1): 69-72. |
[15] | 黄英杰; 陈玮; 邓则名; 王钦若; 李军; 杜玉晓;. 钢板彩涂过程中张力控制系统的研究[J]. 广东工业大学学报, 2006, 23(4): 45-49. |
|