广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 11-18.doi: 10.12052/gdutxb.230111

• 智慧医疗 • 上一篇    下一篇

ECM重塑下肿瘤淋巴管生成模型的定性分析与数值模拟

王振友, 黄亚婷   

  1. 广东工业大学 数学与统计学院, 广东 广州 510520
  • 收稿日期:2023-08-23 出版日期:2024-01-25 发布日期:2024-02-01
  • 通信作者: 黄亚婷(1998–),女,硕士研究生,主要研究方向为肿瘤数学,E-mail:2112114043@mail2.gdut.edu.cn
  • 作者简介:王振友(1979–),男,教授,博士,主要研究方向为计算生物学、医学数据与统计分析计算等,E-mail:zywang@gdut.edu.cn
  • 基金资助:
    广东省自然科学基金资助项目(2023A1515012891)

Qualitative Analysis and Numerical Simulation of Generative Model of Tumor Lymphatic Vessels Under ECM Remodeling

Wang Zhen-you, Huang Ya-ting   

  1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2023-08-23 Online:2024-01-25 Published:2024-02-01

摘要: 肿瘤转移是肿瘤发展过程中的重要环节,也是导致癌症恶化和治疗失败的主要原因之一。以肿瘤转移为背景,本文研究基于肿瘤与细胞外基质(Extracellular Matrix,ECM)相互作用的肿瘤淋巴管生成模型。首先用数学语言梳理肿瘤淋巴管生成的生物原理,其次做出假设,建立数学模型并进行定性分析。主要通过逼近方法、偏微分方程定性理论和Banach不动点定理证明模型局部解的存在唯一性,以及借助局部解的正则性估计和嵌入不等式证明模型整体解的存在唯一性。最后利用差分数值方法进行数值模拟来说明模型的可靠性与准确性。本文对深入理解肿瘤转移机制、指导癌症治疗以及推动相关研究具有重要意义。

关键词: 肿瘤淋巴管生成, 细胞外基质, 反应扩散, 存在性, 唯一性

Abstract: Tumor metastasis is an important link in the process of tumor development, and it is also one of the main reasons for cancer deterioration and treatment failure. Taking tumor metastasis as the background, a study is conducted on the generative model of tumor lymphatics based on the interaction between tumor and extracellular matrix (ECM). First, mathematical language is used to sort out the biological principles of tumor lymphangiogenesis, and then assumptions made and mathematical models established and qualitative analysis carried out. The proof of the uniqueness of the existence of local solutions of the model is mainly carried out by means of approximation methods, the qualitative theory of partial differential equations and Banach's immovable point theorem, as well as the uniqueness of the existence of the overall solution of the model with the help of the regularity estimate of the local solution and the embedding inequality. Finally, the difference numerical method is used to carry out numerical simulation to illustrate the reliability and accuracy of the model. This research is of great significance for in-depth understanding the mechanism of tumor metastasis, guiding cancer treatment, and promoting related research.

Key words: tumor lymphangiogenesis, extracellular matrix(ECM), reaction diffusion, existence, uniqueness

中图分类号: 

  • O175
[1] DILLEKS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases? [J]. Cancer Medicine, 2019, 8(12): 5574-5576.
[2] LIU P, DING P, SUN C, et al. Lymphangiogenesis in gastric cancer: function and mechanism [J]. European Journal of Medical Research, 2023, 28(1): 405.
[3] ALEJANDRA G L, TATIANA V, PETROVA. Development and aging of the lymphatic vascular system [J]. Advanced Drug Delivery Reviews, 2021, 169: 63-78.
[4] YANG Y L, CAO Y H. The impact of VEGF on cancer metastasis and systemic disease [J]. Seminars in Cancer Biology, 2022, 86(3): 251-261.
[5] KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic Journey [J]. Developmental Cell, 2019, 49(3): 332-346.
[6] LE X N, NILSSON M, GOLDMAN J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC [J]. Journal of Thoracic Oncology, 2021, 16(2): 205-215.
[7] LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche [J]. Cancer Cell, 2016, 30(5): 668-681.
[8] QUINTERO-FABIÁN S, RODRIGO A, ECERRIL-VILLANUEVA, et al. Role of matrix metalloproteinases in angiogenesis and cancer [J]. Frontiers in Oncology, 2019, 9: 1307.
[9] 周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65.
ZHOU Y, WEI X M. A qualitative analysis of a hyperbolic tumor growth model with robin free boundary [J]. Journal of Guangdong University of Technology, 2021, 38(2): 60-65.
[10] 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(5): 38-42.
LIANG X Z, WEI X M. Existence of the solution to the metabolic model of colon cancer cells [J]. Journal of Guangdong University of Technology, 2019, 36(5): 38-42.
[11] CUI S B. Analysis of a free boundary problem modeling tumor growth [J]. Acta Mathematica Sinica, 2005, 21(5): 1071-1082.
[12] LADYZHENSKAYA O A, SOLONNIKOV V A, URAL'TSEVA N N. Linear and quasi-linear equations of parabolic type[M]. Translations of Mathematical Monographs. USA: Am Math Soc, 1968: 23.
[13] FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis [J]. Mathematical Models & Methods in Applied Sciences, 2005, 15(1): 95-107.
[14] WEI X, CUI S. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth [J]. Nonlinear Analysis:Real World Applications, 2008, 9(5): 1827-1836.
[15] WEI X, GUO C. Global existence for a mathematical model of the immune response to cancer [J]. Nonlinear Analysis Real World Applications, 2010, 11(5): 3903-3911.
[16] 王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.
[17] LAI X, FRIEDMAN A. Combination therapy for melanoma with braf/mek inhibitor and immune checkpoint inhibitor: a mathematical model [J]. BMC Systems Biology, 2017, 11(1): 70.
[1] 梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(05): 38-42.
[2] 陈美癸, 卫雪梅. 视网膜氧分布与脑红蛋白作用模型解的存在唯一性[J]. 广东工业大学学报, 2018, 35(05): 45-50.
[3] 卢创业, 卫雪梅. 一个视网膜血管肿瘤数学模型整体解的存在唯一性[J]. 广东工业大学学报, 2016, 33(03): 70-75.
[4] 陆宇. 一类四阶边值问题解的存在性[J]. 广东工业大学学报, 2014, 31(2): 69-73.
[5] 陈学松; . 矩阵方程X+A~* F(X)A=Q解的存在性与扰动分析[J]. 广东工业大学学报, 2007, 24(03): 21-23.
[6] 卫雪梅; . 散度形式的非古典抛物方程解的存在唯一性[J]. 广东工业大学学报, 2005, 22(4): 111-116.
[7] 杨淑伶; . 一类反应扩散方程的整体吸引子[J]. 广东工业大学学报, 2005, 22(3): 113-115.
[8] 杨淑伶; . 一类反应扩散方程的整体解[J]. 广东工业大学学报, 2003, 20(2): 93-96.
[9] 梁锦鹏; . 具有二个奇点的Van der pol型方程的极限环[J]. 广东工业大学学报, 2000, 17(2): 96-100.
[10] 梁锦鹏; . 非线性方程的另一Филиппов定理[J]. 广东工业大学学报, 1999, 16(4): 83-86.
[11] 梁锦鹏; . 方程=φ(y)-F(x),=-g(x)的极限环唯一性定理[J]. 广东工业大学学报, 1998, 15(2): 115-118.
[12] 梁锦鹏. 方程(dx)/(dt)=φ(y)-F(x),(dy)/(dt)=-g(x)的极限环存在定理[J]. 广东工业大学学报, 1996, 13(4): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!