广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 21-33.doi: 10.12052/gdutxb.210128

• 木质素科学与技术 • 上一篇    下一篇

木质素基可降解复合膜材料的研究进展

郝艳平1, 罗通1, 吕高金1,2, 王超1, 周昊2, 杨桂花1, 陈嘉川1   

  1. 1. 齐鲁工业大学(山东省科学院) 生物基材料与绿色造纸国家重点实验室, 山东 济南 250353;
    2. 日照金禾生化集团股份有限公司, 山东 日照 276800
  • 收稿日期:2021-08-30 发布日期:2022-01-20
  • 通信作者: 吕高金(1984-),男,教授,主要研究方向为生物质资源高值化利用、木质素化学与化工,E-mail:gaojinlv@qlu.edu.cn
  • 作者简介:郝艳平(1998-),女,硕士研究生,主要研究方向为木质素化学及其复合功能材料
  • 基金资助:
    国家自然科学基金资助项目(31770630)

Research Progress of Lignin-derived Biodegradable Composite Film Materials

Hao Yan-ping1, Luo Tong1, Lyu Gao-jin1,2, Wang Chao1, Zhou Hao2, Yang Gui-hua1, Chen Jia-chuan1   

  1. 1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
    2. RZBC Group Co., Ltd., Rizhao 276800, China
  • Received:2021-08-30 Published:2022-01-20

摘要: 传统塑料薄膜制品的不可降解性所带来的环境和社会问题日渐凸显, 促使了生物基可降解、可再生膜材料的发展。木质素是一种储量最丰富的天然芳香族聚合物, 近年来研究人员将其与其他聚合物复合, 制备具有特定功能的高附加值可降解膜材料, 取得了许多重大成果。本文从可持续发展的角度, 首先介绍了木质素的结构、化学特性及分离方式; 其次综述了木质素基可降解复合膜材料的制备及其在可降解地膜、包装材料、传感器响应材料、抗菌和紫外防护等方面应用的最新进展。并讨论了木质素基生物可降解复合膜材料面临的主要问题, 为今后环境友好型木质素基功能膜材料的制备及应用提供一定参考。

关键词: 木质素, 聚合物, 生物降解, 复合膜材料

Abstract: The non-degradability of traditional plastic film products leads to serious environmental and social issues, which promotes the development of biodegradable composite film materials. Recent advances in abundant natural polymeric materials with different structural properties and excellent biodegradability were presented. Lignin, as the most abundant aromatic polymer, is considered a promising choice to manufacture multifarious advanced and functional film materials. From the perspective of sustainable development, the structure, chemical characteristics, fractionation methods of lignin are first introduced, and then a review focuses on the preparation of biodegradable composite film material and recent progress of lignin-derived biodegradable film materials with designed functionalities for different applications, such as degradable plastic film material, packaging materials, sensor response materials, antibacterial, and UV protection. Finally, the main problems faced by lignin-based biodegradable composite film materials are discussed, and the potential development directions for environmental-friendly lignin-based functional membrane materials in the future are proposed.

Key words: lignin, polymer, biodegradable, composite film material

中图分类号: 

  • TQ314.1
[1] LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack- entry mode [J]. Nature Sustainability, 2020, 3(11): 929-937.
[2] WANG Q, ZHENG C, ZHANG J, et al. Insights into the adsorption of Pb(II) over trimercapto-s-triazine trisodium salt-modified lignin in a wide pH range [J]. Chemical Engineering Journal Advances, 2020, 1: 100002.
[3] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858.
LU Y, WEI X Y, ZONG Z M, et al. Structural investigation and application of lignins [J]. Progress in Chemistry, 2013, 25(5): 838-858.
[4] YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimic- robial organic materials [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3502-3514.
[5] LI C, CHEN C, WU X, et al. Recent advancement in lignin biorefinery: with special focus on enzymatic degradation and valorization [J]. Bioresource Technology, 2019, 291: 121898.
[6] BRAZIL T R, GONCALVES M, JUNIOR M S O, et al. A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes [J]. Microporous and Mesoporous Materials, 2020, 308: 110485.
[7] YU O, KIM K H. Lignin to materials: a focused review on recent novel lignin applications [J]. Applied Sciences, 2020, 10(13): 4626.
[8] DORRESTIJN E, LAARHOVEN L J J, ARENDS I W C E, et al. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal [J]. Journal of Analytical and Applied Pyrolysis, 2000, 54(1): 153-192.
[9] SAJJADI M, AHMADPOOR F, NASROLLAHZADEH M, et al. Lignin-derived (nano)materials for environmental pollution remediation: current challenges and future perspectives [J]. International Journal of Biological Macromolecules, 2021, 178: 394-423.
[10] 雷鸣. 木质素结构单元间主要化学键连接在热解过程的断裂与重组机制研究[D]. 广州: 华南理工大学, 2019.
[11] CHIO C, SAIN M, QIN W. Lignin utilization: a review of lignin depolymerization from various aspects [J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249.
[12] LU F, YUE F. Lignin: biosynthesis, functions and economic significance [M]. New York: Nova Science Publishers, Inc. , 2019.
[13] 岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(2): 12-20.
YUE F X, LIN M S, QIAN Y, et al. Recent advances of anti-UV radiation of lignin [J]. Journal of Forestry Engineering, 2021, 6(2): 12-20.
[14] 马艾丽. 木质素高值化材料的制备与应用性能研究[D]. 广州: 华南理工大学, 2014.
[15] RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core [J]. Nature Nanotechnology, 2015, 10(9): 817-823.
[16] LI P, LYU W, AI S. Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties [J]. Journal of Experimental Nanoscience, 2016, 11(1): 18-27.
[17] CERRUTTI B, MORAES M L, PULCINELLI S, et al. Lignin as immobilization matrix for HIV p17 peptide used in immunosensing [J]. Biosensors & bioelectronics, 2015, 71: 420-426.
[18] DURING A, DEBOUCHE C, RAAS T, et al. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells [J]. The Journal of nutrition, 2012, 142(10): 1798-1805.
[19] FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications [J]. Progress in Materials Science, 2018, 93: 233-269.
[20] 杨军艳, 毕宇霆, 吴建新, 等. 木质素化学改性研究进展[J]. 上海应用技术学院学报(自然科学版), 2015, 15(1): 29-39.
YANG J Y, BI Y T, WU J X, et al. Research advances in chemical modification of lignin [J]. Journal of Shanghai Institute of Technology(Natural Science), 2015, 15(1): 29-39.
[21] LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: towards biobased polymers [J]. Progress in Polymer Science, 2014, 39(7): 1266-1290.
[22] 文甲龙, 陈天影, 孙润仓. 生物质木质素分离和结构研究方法进展[J]. 林业工程学报, 2017, 2(5): 76-84.
WEN J L, CHEN T Y, SUN R C. Research progress on separation and structural analysis of lignin in lignocellulosic biomass [J]. Journal of Forestry Engineering, 2017, 2(5): 76-84.
[23] HU Z, YEH T F, CHANG H M, et al. Elucidation of the structure of cellulolytic enzyme lignin [J]. Holzforschung, 2006, 60(4): 389-397.
[24] WU S, ARGYROPOULOS D. An improved method for isolating lignin in high yield and purity [J]. Journal of Pulp and Paper Science, 2003, 29(7): 235-240.
[25] CHEN T Y, WANG B, WU Y, et al. Structural variations of lignin macromolecule from different growth years of Triploid of Populus tomentosa Carr [J]. International Journal of Biological Macromolecules, 2017, 101: 747-757.
[26] LU Y, LU Y C, HU H Q, et al. Structural characterization of lignin and its degradation products with spectroscopic methods [J]. Journal of Spectroscopy, 2017, 2017: 1-15.
[27] 苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107-115.
SU X R, FU Y J, LI Z Q, et al. Research progress on extraction and high-value application of lignin [J]. Journal of Dalian Polytechnic University, 2021, 40(2): 107-115.
[28] 李利芬, 胡英成. 离子液体在木质素研究中的应用[J]. 林产化学与工业, 2015, 35(2): 163-170.
LI L F, HU Y C. Application of ionic liquids in lignin processing [J]. Chemistry and Industry of Forest Products, 2015, 35(2): 163-170.
[29] TAN Y T, NGOH G C, CHUA A S M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin [J]. Bioresource Technology, 2019, 281: 359-366.
[30] ZHANG Z, XIN L, QI J, et al. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst [J]. Green Chemistry, 2012, 14(8): 2150-2152.
[31] 王毕魁, 盛丽萍, 舒友, 等. 木质素基生物降解高分子材料的研究进展[J]. 邵阳学院学报(自然科学版), 2020, 17(1): 73-80.
WANG B K, SHENG L P, SHU Y, et al. Research progress of lignin-based biodegradable polymer composites [J]. Journal of Shaoyang University(Natural Science Edition), 2020, 17(1): 73-80.
[32] WANG H M, YUAN T Q, SONG G Y, et al. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world [J]. Green Chemistry, 2021, 23(11): 3790-3817.
[33] 朱建, 陈慧, 卢凯, 等. 淀粉基生物可降解材料的研究新进展[J]. 高分子学报, 2020, 51(9): 983-995.
ZHU J, CHEN H, LU K, et al. Recent progress on starch-based biodegradable materials [J]. Acta Polymerica Sinica, 2020, 51(9): 983-995.
[34] JIMÉNEZ A, FABRA M J, TALENS P, et al. Edible and biodegradable starch films: a review [J]. Food and Bioprocess Technology, 2012, 5(6): 2058-2076.
[35] SHI R, LI B. Synthesis and characterization of cross-linked starch/lignin film [J]. Starch-Stärke, 2016, 68(11-12): 1224-1232.
[36] 吕星毅, 曹巍瀚, 杨琰嘉, 等. 淀粉/木质素复合膜的制备与性能研究[J]. 广东化工, 2017, 44(20): 18-19.
LYU X Y, CAO W H, YANG Y J, et al. Preparation and characterization of starch/lignin composite films [J]. Guangdong Chemical Industry, 2017, 44(20): 18-19.
[37] BHAT R, ABDULLAH N, DIN R H, et al. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste [J]. Journal of Food Engineering, 2013, 119(4): 707-713.
[38] MUJTABA M, MORSI R E, KERCH G, et al. Current advancements in chitosan-based film production for food technology:a review [J]. International Journal of Biological Macromolecules, 2019, 121: 889-904.
[39] CHEN L, TANG C Y, NING N Y, et al. Preparation and properties of chitosan/lignin composite films [J]. Chinese Journal of Polymer Science, 2009, 27(5): 739-746.
[40] YANG W, OWCZAREK J S, FORTUNATI E, et al. Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging [J]. Industrial Crops and Products, 2016, 94: 800-811.
[41] 苏玲, 李珊珊, 方桂珍. 碱木质素壳聚糖反应膜的制备与性能[J]. 功能材料, 2013, 44(9): 1353-1358.
SU L, LI S S, FANG G Z. Preparation and performance of alkali lignin/chitosan reaction film [J]. Journal of Functional Materials, 2013, 44(9): 1353-1358.
[42] DUAN Y, FREYBURGER A, KUNZ W, et al. Lignin/chitin films and their adsorption characteristics for heavy metal Ions [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6965-6973.
[43] AVEROUS L. Handbook of biopolymers and biodegradable plastics [M]. Amsterdam: William Andrew, 2013: 171.
[44] YANG Y, ZHANG L, XIONG Z, et al. Research progress in the heat resistance, toughening and filling modification of PLA [J]. Science China Chemistry, 2016, 59(11): 1355-1368.
[45] LI X, HEGYESI N, ZHANG Y, et al. Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method [J]. European Polymer Journal, 2019, 110: 378-384.
[46] MU C Y, XUE L Y, ZHU J, et al. Mechanical and thermal properties of toughened poly(L-lactic) acid and lignin blends [J]. BioResources, 2014, 9(3): 5557-5566.
[47] GORDOBIL O, EGÜÉS I, LLANO-PONTE R, et al. Physicochemical properties of PLA lignin blends [J]. Polymer Degradation and Stability, 2014, 108: 330-338.
[48] GORDOBIL O, EGÜÉS I, LABIDI J. Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA [J]. Reactive and Functional Polymers, 2016, 104: 45-52.
[49] SHANKAR S, RHIM J-W, WON K. Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties [J]. International Journal of Biological Macromolecules, 2018, 107: 1724-1731.
[50] 贺晓艳. 改性纳米木质素增强可降解聚合物薄膜性能研究[D]. 哈尔滨: 东北林业大学, 2019.
[51] WANG X, BIAN H, NI S, et al. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles [J]. International Journal of Biological Macromolecules, 2020, 157: 259-266.
[52] 苏玲. 碱木质素-PVA基交联薄膜的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2015.
[53] 姜黎, 叶德展, 张明华, 等. 木质素磺酸钙/聚乙烯醇共混体系的结构与性能[J]. 高分子材料科学与工程, 2015, 31(5): 32-38.
JIANG L, YE D Z, ZHANG M H, et al. Structure and properties of lignosulfonate calcium/polyvinyl alcohol blends [J]. Polymer Materials Science and Engineering, 2015, 31(5): 32-38.
[54] ZHANG X, LIU W, LIU W, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties [J]. International Journal of Biological Macromolecules, 2020, 142: 551-558.
[55] POSOKNISTAKUL P, TANGKRAKUL C, CHAOSUANPHAE P, et al. Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film [J]. ACS Omega, 2020, 5(33): 20976-20982.
[56] LUO T, WANG C, JI X, et al. Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites [J]. International Journal of Biological Macromolecules, 2021, 183: 781-789.
[57] 陈韶辉, 李涛. 生物降解塑料的产业现状及其发展前景[J]. 现代塑料加工应用, 2020, 32(2): 50-54.
CHEN S H, LI T. Industry statue development prospects of biodegradable plastics [J]. Modern Plastics Processing and Applications, 2020, 32(2): 50-54.
[58] WATTANAWONG N, AHT-ONG D. Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films [J]. Polymer Degradation and Stability, 2021, 183: 109459.
[59] KHAN H, KAUR S, BALDWIN T C, et al. Effective control against broadleaf weed species provided by biodegradable PBAT/PLA mulch film embedded with the Herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5360-5370.
[60] ZHANG Y, ZHOU S, FANG X, et al. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin [J]. European Polymer Journal, 2019, 116: 265-274.
[61] LIU L, HUANG G, SONG P, et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4732-4742.
[62] QIU S, ZHOU Y, WATERHOUSE G I N, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films [J]. Food Chemistry, 2021, 334: 127487.
[63] XIONG S J, PANG B, ZHOU S J, et al. Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346.
[64] XING Q, RUCH D, DUBOIS P, et al. Biodegradable and high-performance poly(butylene adipate-co-terephthalate)-lignin UV-blocking films [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10342-10351.
[65] XING Q, BUONO P, RUCH D, et al. Biodegradable UV-blocking films through core–shell lignin–melanin nanoparticles in poly(butylene adipate-co-terephthalate) [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4147-4157.
[66] 赵鑫, 常静. ε-己内酯与聚己内酯研究应用进展[J]. 煤炭与化工, 2021, 44(4): 130-134.
ZHAO X, CHANG J. Progress in research and application of ε-caprolactone and polycaprolactone [J]. Coal and Chemical Industry, 2021, 44(4): 130-134.
[67] CHENG P F, LIANG M, YUN X Y, et al. Biodegradable blend films of poly(ε-caprolactone)/poly(propylene carbonate) for shelf life extension of whole white button mushrooms [J]. Journal of Food Science and Technology, 2021, 6: 1-13.
[68] OUYANG W Z, HUANG Y. Cellulolytic enzyme lignin efficiently blended with polycaprolactone: thermal, mechanical properties and morphological evaluation [J]. Advanced Materials Research, 2014, 1070-1072: 100-106.
[69] 王飞. 木质素/聚己内酯降解塑料的制备及性能研究[D]. 绵阳: 西南科技大学, 2015.
[70] YANG W, QI G, DING H, et al. Biodegradable poly (lactic acid)-poly (ε-caprolactone)-nanolignin composite films with excellent flexibility and UV barrier performance [J]. Composites Communications, 2020, 22: 100497.
[71] ZHANG Y, LIAO J, FANG X C, et al. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4276-4284.
[72] 雍婕, 程益, 周海燕. 地膜降解途径及机理研究进展[J]. 应用生态学报, 2021, 32(2): 729-736.
YONG J, CHENG Y, ZHOU H Y. Advances in researches of the mulch-film degradation and the underlying mechanism [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 729-736.
[73] 靳拓, 薛颖昊, 张明明, 等. 国内外农用地膜使用政策、执行标准与回收状况[J]. 生态环境学报, 2020, 29(2): 411-420.
JIN T, XUE Y H, ZHANG M M, et al. Research advances in regulations, standards and recovery of mulch film [J]. Ecology and Environmental Sciences, 2020, 29(2): 411-420.
[74] 陈夫山, 王帅. 木质素基环保地膜的研究[J]. 造纸科学与技术, 2014, 33(2): 88-91.
CHEN F S, WANG S. Study on environmentally friendly lignin based mulching films [J]. Paper Science & Technology, 2014, 33(2): 88-91.
[75] ZHANG Y, WANG J, FANG X, et al. High solid content production of environmentally benign ultra-thin lignin-based polyurethane films: Plasticization and degradation [J]. Polymer, 2019, 178: 121572.
[76] 康智勇, 杨浩雄. 我国塑料食品包装的安全性分析[J]. 中国塑料, 2018, 32(10): 13-19.
KANG Z Y, YANG H X. A brief analysis of safety concerns for plastic food packaging materials in China [J]. China Plastics, 2018, 32(10): 13-19.
[77] RAI S, DUTTA P, MEHROTRA G. Lignin incorporated antimicrobial chitosan film for food packaging application [J]. Journal of Polymer Materials, 2017, 34: 171-183.
[78] SHANKAR S, REDDY J P, RHIM J W. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films [J]. International Journal of Biological Macromolecules, 2015, 81: 267-273.
[79] RUKMANIKRISHNAN B, RAJASEKHARAN S K, LEE J, et al. K-Carrageenan/lignin composite films: biofilm inhibition, antioxidant activity, cytocompatibility, UV and water barrier properties [J]. Materials Today Communications, 2020, 24: 101346.
[80] WANG J, DENG H Y, Qian Y, et al. Reduction of lignin color via one-step UV irradiation [J]. Green Chemistry, 2015, 18(3): 695-699.
[81] KAI D, TAN M, CHEE P L, et al. Towards lignin-based functional materials in a sustainable world [J]. Green Chemistry, 2016, 18(5): 1175-1200.
[82] 王静雅, 方向晨, 白富栋, 等. 生物可降解的聚己内酯-g-木质素薄膜的制备与性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 472-479.
WANG J Y, FANG X C, BAI F D, et al. Preparation and properties of biodegradable polycaprolactone grafted lignin films [J]. Journal of East China University of Science and Technology, 2020, 46(4): 472-479.
[83] QIAN Y, ZHONG X W, LI Y, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor [J]. Industrial Crops and Products, 2017, 101: 54-60.
[84] WU W, LIU T, DENG X, et al. Ecofriendly UV-protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin [J]. International Journal of Biological Macromolecules, 2019, 126: 1030-1036.
[85] 徐冠豪. 麦草碱木质素/聚乙烯醇共混膜材料的制备与表征[D]. 哈尔滨: 东北林业大学, 2014.
[86] HUANG J, WANG S, LYU S. Facile preparation of a robust and durable superhydrophobic coating using biodegradable lignin-coated cellulose nanocrystal particles [J]. Materials (Basel), 2017, 10(9): 1080.
[87] LANDAETA E, ISAACS M, SCHREBLER R, et al. Enhanced photostability of cuprous oxide by lignin films on glassy carbon electrodes in the transformation of carbon dioxide [J]. Green Chemistry, 2018, 20: 2356-2364.
[1] 万涛, 原文雄, 赵晨, 闵永刚. 二维材料与导电聚合物复合材料在柔性超级电容器中的研究进展[J]. 广东工业大学学报, 2023, 40(02): 74-81.
[2] 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13.
[3] 马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 14-20,62.
[4] 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134.
[5] 温伟球, 郭建维. pH响应型星状聚合物胶束的制备及释药性能[J]. 广东工业大学学报, 2021, 38(01): 89-96.
[6] 羊惠燕, 郭建维. 星状pH响应聚合物及其自组装胶束研究[J]. 广东工业大学学报, 2019, 36(01): 81-86.
[7] 刘卅, 钟春婷, 王卫卫, 王艳艳, 任力. 石英晶体微天平研究刷状聚合物的自组装过程[J]. 广东工业大学学报, 2018, 35(02): 1-5.
[8] 李雄, 郭建维, 潘莉辉, 傅淑琴, 朱东雨. 低分子马来酸酐-牛磺酸共聚物的合成及应用性能研究[J]. 广东工业大学学报, 2015, 32(04): 30-34.
[9] 傅淑琴, 郭建维, 马倩, 陈少华, 杨平, 崔亦华. 可生物降解高分子助洗剂P(AA-co-MDO)的制备与性能[J]. 广东工业大学学报, 2013, 30(4): 39-42.
[10] 张吉桥. 心脏补片的生物力学研究评述[J]. 广东工业大学学报, 2012, 29(2): 33-37.
[11] 雷彩红; 苟玉慧; . DSC在研究聚合物共混体系酯交换反应中的应用[J]. 广东工业大学学报, 2009, 26(1): 23-.
[12] 罗洁; 唐文军; . 不同电导率的PEDOT对聚合物光电池性能的影响[J]. 广东工业大学学报, 2008, 25(3): 6-9.
[13] 罗洁; 唐文军; . 聚合物固体薄膜光电池的研究进展[J]. 广东工业大学学报, 2008, 25(2): 86-91.
[14] 刘发兴; . 偶氮苯聚合物中推—拉结构对光学性能的影响[J]. 广东工业大学学报, 2004, 21(1): 50-51.
[15] 尚贵才; 周彦豪; 胡丽萍; 陈福林; . 降解塑料的现状、问题与发展趋势[J]. 广东工业大学学报, 2002, 19(1): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!