广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 14-20,62.doi: 10.12052/gdutxb.210118
马明国, 袁琪
Ma Ming-guo, Yuan Qi
摘要: 木质素结构复杂, 来源广泛, 价格低廉, 是自然界可再生的酚类聚合物。木质素可以转化为能源、化学品及多功能材料, 具有广阔的潜在应用前景。本文简单地介绍了木质素的分离、结构与基本性质, 综述了基于木质素的多功能材料研究进展, 尤其是依托典型案例介绍了基于木质素的多功能材料在能源、环境、传感以及碳达峰碳中和等领域中的研究进展。最后, 对多功能木质素材料存在的问题和潜在的发展方向给予了建议,以期为基于木质素的多功能材料的资源化和高值化应用提供途径和思路。
中图分类号:
[1] RALPH J, LAPIERRE C, BOERJAN W. Lignin structure and its engineering [J]. Current Opinion in Biotechnology, 2019, 56: 240-249. [2] YANG H T, YU B, XU X D, et al. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials [J]. Green Chemistry, 2020, 22: 2129-2161. [3] LIU C, WU S L, ZHANG H Y, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review [J]. Fuel Processing Technology, 2019, 191: 181-201. [4] LI S M, SUN S L, MA M G, et al. Lignin-based carbon/CePO4 nanocomposites: solvothermal fabrication, characterization, thermal stability, and luminescence [J]. Bioresources, 2013, 8: 4155-4170. [5] LI S X, LI M F, BING J, WU X F, et al. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent [J]. International Journal of Biological Macromolecules, 2019, 132: 836-843. [6] LIU R, DAI L, XU C L, et al. Lignin-based micro- and nanomaterials and their composites in biomedical applications [J]. ChemSusChem, 2020, 13: 4266-4283. [7] WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects [J]. Bioresource Technology, 2019, 271: 449-461. [8] PONNUSAMY V K, NGUYEN D D, DHARMARAJA J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential [J]. Bioresource Technology, 2019, 271: 462-472. [9] 宋国勇. “木质素优先”策略下林木生物质组分催化分离与转化研究进展[J]. 林业工程学报, 2019, 4(5): 1-10. SONG G Y. The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy [J]. Journal of Forestry Engineering, 2019, 4(5): 1-10. [10] DENG J, SUN S F, ZHU E Q, et al. Sub-micro and nano-lignin materials: small size and rapid progress [J]. Industrial Crops & Products, 2021, 164: 113412. [11] SHI Z J, MA M G. Synthesis, structure, and applications of lignin-based carbon materials: a review [J]. Science of Advanced Materials, 2019, 11: 18-32. [12] MA C, KIM T H, LIU K, et al. Multifunctional lignin-based composite materials for emerging applications [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 708976. [13] 陈小红. Rh(Ⅲ)催化含氮有机物与重氮化合物的偶联反应 [D]. 北京: 北京林业大学, 2018. [14] 孙建奎. 基于木质素优先的催化解聚及生物质全组分分级转化[D]. 北京: 北京林业大学, 2019. [15] 李赫龙. 后过渡金属催化木质素氢解路线及机理研究[D]. 北京: 北京林业大学, 2020. [16] 陈雪. 速生生物质半纤维素及木质素组分转化为化学品研究[D]. 北京: 北京林业大学, 2020. [17] 毛健贞. 乌拉草木质素结构解析及预处理过程中的木质素结构变化[D]. 北京: 北京林业大学, 2014. [18] RENCORET J, PRINSEN P, GUTIERREZ A, et al. Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer's spent grain [J]. Journal of Agricultural and Food Chemistry, 2015, 63: 603-613. [19] ANDO D, NAKATSUBO T, TAKANO T, et al. Multi-step degradation method for beta-O-4 linkages in lignins: gamma-TTSA method. Part 3. Degradation of milled wood lignin (MWL) from Eucalyptus globulus [J]. Holzforschung, 2013, 67: 835-841. [20] JUNG H G, MERTENS D R, PAYNE, A J. Correlation of acid detergent lignin and Klason lignin with digestibility of forage dry matter and neutral detergent fiber [J]. Journal of Dairy Science, 1997, 80: 1622-1628. [21] YE Q Q, YOKOYAMA T. Revisiting the mechanism of beta-O-4 bond cleavage during acidolysis of lignin VII: acidolyses of non-phenolic C-6-C-2-type model compounds using HBr, HCl and H2SO4, and a proposal on the characteristic action of Br- and Cl- [J]. Journal of Wood Science, 2020, 66: 80. [22] GUERRA A, FILPPONEN I, LUCIA L A, et al. Toward a better understanding of the lignin isolation process from wood [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 5939-5947. [23] LIAO J J, ABD LATIF N H, TRACHE D, et al. Current advancement on the isolation, characterization and application of lignin [J]. International Journal of Biological Macromolecules, 2020, 162: 985-1024. [24] COLOMBO S M, ZHANG Z, WONG D F, et al. Hydrolysis lignin as a multifunctional additive in Atlantic salmon feed improves fish growth performance and pellet quality and shifts gut microbiome [J]. Aquaculture Nutrition, 2020, 26: 1353-1368. [25] 李立霞. 多级孔分子筛负载铜基催化剂的制备及其催化木质素选择性氧化解聚[D]. 广州: 华南理工大学, 2020. [26] 李章敏. 金属基离子液体定向解聚木质素制备高值化学品的研究[D]. 广州: 华南理工大学, 2018. [27] 邵鲁鹏. 工业木质素热化学转化制备芳香化学品的研究[D]. 北京: 北京林业大学, 2018. [28] 高士帅. 木质素衍生物改性脲醛树脂的机制及其性能研究[D]. 北京: 北京林业大学, 2020. [29] 蔡诚. pH响应木质素表面活性剂的合成及其在木质纤维素酶解和酶回收中的应用[D]. 广州: 华南理工大学, 2020. [30] 秦延林. 羟丙基磺化碱木质素染料分散剂及草酸预处理制备纳米纤维素的研究[D]. 广州: 华南理工大学, 2016. [31] 武颖. 木质素天然高分子紫外防护剂的广谱化改性及微结构调控[D]. 广州: 华南理工大学, 2020. [32] 李涛. 木质素基多功能缓控释肥料的制备及其性能研究[D]. 兰州: 兰州大学, 2019. [33] 贺晓艳. 改性纳米木质素增强可降解聚合物薄膜性能研究[D]. 哈尔滨: 东北林业大学, 2019. [34] ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors [J]. Progress in Energy and Combustion Science, 2020, 76: 100788. [35] PARK J H, RANA H H, LEE J Y, et al. Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes [J]. Journal of Materials Chemistry A, 2019, 7: 16962-16968. [36] LIU S, MA M G. Lignin-derived nitrogen-doped polyacrylonitrile/polyaniline carbon nanofibers by electrospun method for energy storage [J]. Ionics, 2020, 26(9): 4651-4660. [37] FU F B, YANG D J, ZHANG W L, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors [J]. Chemical Engineering Journal, 2020, 392: 123721. [38] JHA S, MEHTA S, CHEN Y, et al. Design and synthesis of lignin-based flexible supercapacitors [J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 498-511. [39] HEROU S, BAILEY J J, KOK M, et al. High-density lignin-derived carbon nanofiber supercapacitors with enhanced volumetric energy density [J]. Advanced Science, 2021: 2100016. [40] LIU H Y, XU T, LIU K, et al. Lignin-based electrodes for energy storage application [J]. Industrial Crops & Products, 2021, 165: 113425. [41] SUN Y C, WANG T T, SUN X Y, et al. The potential of biochar and lignin-based adsorbents for wastewater treatment: Comparison, mechanism, and application? a review [J]. Industrial Crops and Products, 2021, 166: 113473. [42] SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: current trend, perspectives and opportunities [J]. Bioresource Technology, 2019, 272: 570-581. [43] LI Y L, WU M, WANG B, et al. Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources [J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 5523-5532. [44] MA Y Z, ZHENG D F, MO Z Y, et al. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange [J]. Colloids and Surfaces A, 2018, 559: 226-234. [45] JIANG X Y, WANG G H, LIU Q J, et al. Graft copolymerization of acrylic acid on Kraft lignin to enhance aniline adsorption from aqueous solution [J]. TAPPI Journal, 2019, 18: 75-84. [46] DAI L, LI Y T, LIU R, et al. Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium (III) removal [J]. International Journal of Biological Macromolecules, 2019, 132: 478-486. [47] SUI W J, PANG T R, WANG G H, et al. Stepwise ethanol-water fractionation of enzymatic hydrolysis lignin to improve its performance as a cationic dye adsorbent [J]. Molecules, 2020, 25: 2603. [48] MENG L Y, MA M G, JI X X. Preparation of lignin-based carbon materials and its application as a sorbent [J]. Materials, 2019, 12: 1111. [49] AN L, SI C L, BAE J H, et al. One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution [J]. International Journal of Biological Macromolecules, 2020, 159: 222-230. [50] CHOKKAREDDY R, REDHI G G, KARTHICK T. A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples [J]. Heliyon, 2019, 5: e01457. [51] YUN X J, ZHANG Q T, LUO B, et al. Fabricating flexibly resistive humidity sensors with ultra-high sensitivity using carbonized lignin and sodium alginate [J]. Electroanalysis, 2020, 32: 2282-2289. [52] WANG Q H, PAN X F, LIN C M, et al. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: sulfonated lignin as conductive materials [J]. Chemical Engineering Journal, 2019, 370: 1039-1047. [53] WANG Q H, PAN X F, GUO J J, et al. Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors [J]. Chemical Engineering Journal, 2021, 414: 128903. [54] WANG Q H, LAN J X, HUA Z F, et al. An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors [J]. International Journal of Biological Macromolecules, 2021, 184: 282-288. [55] HAN X, LV Z L, RAN F L, et al. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel [J]. International Journal of Biological Macromolecules, 2021, 176: 78-86. [56] WANG F, GAO C H, ZHANG W L, et al. Industrial structure optimization and low-carbon transformation of Chinese industry based on the forcing mechanism of CO2 emission peak target [J]. Sustainability, 2021, 13: 4417. [57] NWACHUKWU C M, WANG C, WETTERLUND E. Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry—the case of Sweden [J]. Applied Energy, 2021, 288: 116558. [58] QUACOE D, WEN X Z, QUACOE D. Nexus among biomass consumption, economic growth, and CO2 emission based on the moderating role of biotechnology: evidence from China [J]. Environmental Science and Pollution Research, 2021, 28: 15755-15767. [59] BAUER N, KLEIN D, HUMPENODER F, et al. Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective [J]. Climatic Change, 2020, 163: 1675-1693. [60] SULAIMAN C, ABDUL-RAHIM A S. Can clean biomass energy use lower CO2 emissions in African economies? empirical evidence from dynamic long-run panel framework [J]. Environmental Science and Pollution Research, 2020, 27: 37699-37708. [61] DESSBESELL L, PALEOLOGOU M, LEITCH M, et al. Global lignin supply overview and Kraft lignin potential as an alternative for petroleum-based polymers [J]. Renewable & Sustainable Energy Reviews, 2020, 123: 109768. [62] LI D Z, HUANG G Y, ZHU S Y, et al. How to peak carbon emissions of provincial construction industry? scenario analysis of Jiangsu Province [J]. Renewable & Sustainable Energy Reviews, 2021, 144: 110953. |
[1] | 符政鑫, 刘霜, 段意强, 朱伟东. 一种电网需求响应资源参与天然气市场的协调框架[J]. 广东工业大学学报, 2023, 40(02): 64-73. |
[2] | 曹怡婷, 王俏, 许泽涛, 吕冠衡. 金属有机框架/铋基复合材料的光催化技术应用研究进展[J]. 广东工业大学学报, 2022, 39(04): 113-120. |
[3] | 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13. |
[4] | 郝艳平, 罗通, 吕高金, 王超, 周昊, 杨桂花, 陈嘉川. 木质素基可降解复合膜材料的研究进展[J]. 广东工业大学学报, 2022, 39(01): 21-33. |
[5] | 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134. |
[6] | 夏宽, 陈健勇, 徐嘉铖, 李绪雄, 郭长旭, 陈颖, 罗向龙. 带气液分离的变频空调系统研究[J]. 广东工业大学学报, 2021, 38(03): 86-90. |
[7] | 朱灿, 林豪慧, 向林芳. 新能源汽车领域研究进展及前沿动态:基于Citespace Ⅲ知识图谱分析[J]. 广东工业大学学报, 2020, 37(02): 45-52. |
[8] | 吴丹琦, 赖俊升, 杨俊华, 李学聪, 赖来利, 熊锋俊. 基于局部粒子群算法的家庭用电负荷优化控制策略[J]. 广东工业大学学报, 2019, 36(06): 66-73. |
[9] | 蒋阅, 刘海林, 王强. 基于基站休眠技术的无线通信网络能源协作策略[J]. 广东工业大学学报, 2018, 35(02): 69-74. |
[10] | 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49. |
[11] | 刘勇健1 , 李彰明1 , 张丽娟1 , 郭依群2. 未来新能源可燃冰的成因与环境岩土问题分析[J]. 广东工业大学学报, 2010, 27(3): 83-87. |
[12] | 李志生; 张国强; 刘建龙; . 亚热带地区建筑能源效率与节能分析[J]. 广东工业大学学报, 2006, 23(1): 1-7. |
[13] | 王芳楷; 黄开胜; 茆美琴; 宁志刚;. 风能太阳能复合电力系统计算机监控软件设计[J]. 广东工业大学学报, 2004, 21(2): 45-49. |
[14] | 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39. |
|