• •
滕少华1, 韦晓杰1, 滕璐瑶2, 张巍1
Teng Shao-hua1, Wei Xiao-jie1, Teng Lu-yao2, Zhang Wei1
摘要: 基于图的多视角聚类方法得到了广泛的研究。然而,现有方法仍然存在两个问题:(1) 有些方法虽然将相似矩阵划分为一致性矩阵和不一致性矩阵,但难以处理被错误划分到不一致性矩阵中的一致性信息,导致有效信息不能得到充分提取。(2) 有些方法虽然得到了具有块对角结构的统一相似矩阵,但没有去除统一相似矩阵中的冗余信息。为了解决这两个问题,本文提出了一种块对角引导的多视角一致性学习(Multi-view Consistency Learning with Block Diagonal Guidance, MCLBDG) 方法。首先,该方法通过低秩表示和自适应邻域的方式获得每个视角的相似矩阵;其次,将每个视角的相似矩阵划分为一致性矩阵和不一致性矩阵。其中,不同视角的不一致性部分通过哈达玛积来筛选。在迭代过程中,被错误划分的一致性部分可以从不一致性信息中逐步提取出来。此外,提出了块对角引导来尽可能去除统一相似矩阵中的冗余信息,减少了不同簇样本之间的干扰。最后,将谱聚类应用到模型当中,直接得到聚类结果。在几个常用数据集上的比较实验验证了该方法的优越性。
中图分类号:
[1] DAFIR Z, LAMARI Y, SLAOUI S C. A survey on parallel clustering algorithms for big data[J]. Artificial Intelligence Review, 2021, 54(4): 2411-2443. [2] BHATTACHARJEE P, MITRA P. A survey of density-based clustering algorithms[J]. Frontiers of Computer Science (print) , 2020, 15(1): 151308. [3] CHEN M S, LIN J Q, LI X L, et al. Representation learning in multi-view clustering: a literature review[J]. Data Science and Engineering, 2022, 7(3): 225-241. [4] XIE Y, ZHANG W S, QU Y Y, et al. Hyper-laplacian regularized multilinear multiview self-representations for clustering and semisupervised learning[J]. IEEE Transactions on Cybernetics, 2020, 50(2): 572-586. [5] ZHANG C Q, FU H Z, HU Q H, et al. Generalized latent multi-view subspace clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86-99. [6] FENG Y C, YUAN Y, LU X Q. Person reidentification via unsupervised cross-view metric learning[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1849-1859. [7] FEI L K, ZHANG B, TENG S H, et al. Joint multiview feature learning for hand-print recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9743-9755. [8] KANG Z, SHI G X, HUANG S D, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-Based Systems, 2020, 105102, ISSN 0950-7051. [9] NIE F P, CAI G H, LI X L. Multi-view clustering and semi-supervised classification with adaptive neighbors[C]//Thirty-first AAAI conference on artificial intelligence. San Francisco: AAAI Press, 2017: 2408-2414. [10] ZHAN K, ZHANG C Q, GUAN J P, et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895. [11] WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32: 1116-1129. [12] SHI S J, NIE F P, WANG R, et al. Auto-weighted multi-view clustering via spectral embedding[J]. Neurocomputing, 2020, 399: 369-379. [13] LIANG Y W, HUANG D, WANG C D, et al. Multi-view graph learning by joint modeling of consistency and inconsistency[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 2848-2862. [14] HAO W Y, PANG S M, YANG B, et al. Tensor-based multi-view clustering with consistency exploration and diversity regularization[J]. Knowledge based systems, 2022, 252: 109342. [15] ZHANG G Y, CHEN X W, ZHOU Y R, et al. Consistency-and inconsistency-aware multi-view subspace clustering[C]//Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei: Springer International Publishing, 2021: 291-306. [16] FANG X Z, HAN N, WONG W K, et al. Flexible affinity matrix learning for unsupervised and semi supervised classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(4): 1133-1149. [17] ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]//Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . USA: IEEE Computer Society, 2017: 4279-4287. [18] XIE D Y, ZHANG X D, GAO Q X, et al. Multiview clustering by joint latent representation and similarity learning[J]. IEEE Transactions on Cybernetics, 2019, 50(11): 4848-4854. [19] ZHOU T, ZHANG C Q, GONG C, et al. Multiview latent space learning with feature redundancy minimization[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1655-1668. [20] MEI Y Y, REN Z W, WU B, et al. Robust graph-based multi-view clustering in latent embedding space[J]. International Journal of Machine Learning and Cybernetics, 2022, 13: 497-508. [21] ZHENG Q H, ZHU J H, LI Z Y, et al. Feature concatenation multi-view subspace clustering[J]. Neurocomputing, 2020, 379: 89-102. [22] LIANG N Y, YANG Z Y, LI Z N, et al. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints[J]. Knowledge-Based Systems, 2020, 194: 105582. [23] TANG C, LIU X W, ZHU X Z, et al. Cgd: multi-view clustering via cross-view graph diffusion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5924-5931. [24] ZHONG G, SHU T, HUANG G H, et al. Multi-view spectral clustering by simultaneous consensus graph learning and discretization[J]. Knowledge-Based Systems, 2022, 235: 107632. [25] 刘瑜童, 滕少华, 张巍. 图的多视角一致性稀疏聚类[J]. 计算机应用研究, 2021, 38(8): 2315-2320. LIU Y T, TENG S H, ZHANG W. Multiview consistency sparse clustering for graph[J]. Application Research of Computers, 2021, 38(8): 2315-2320. [26] YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. [27] 梁毅聪, 张巍, 滕少华. 块对角引导的多视角统一图聚类[J]. 小型微型计算机系统, 2023, 44(8): 1728-1734. LIANG Y C, ZHANG W, TENG S H. Multi-view unified graph clustering guided by block diagonal[J]. Journal of Chinese Computer Systems, 2023, 44(8): 1728-1734. [28] WANG Y, WU L, LIN X M, et al. Multi-view spectral clustering via structured low-rank matrix factorization[J]. 2018, 29(10): 4833-4843. [29] LIANG Y W, HUANG D, WANG C D. Consistency meets inconsistency: a unified graph learning framework for multi-view clustering[C]//IEEE International Conference on Data Mining (ICDM) . Beijing: IEEE, 2019: 1204-1209. [30] ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1261-1270. [31] NIE F P, TIAN L, LI X L. Multiview clustering via adaptively weighted Procrustes[C]//Proceedings of the Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: KDD, 2018: 2022-2030. [32] WEN J, ZHANG Z, ZHANG Z, et al. Generalized Incomplete Multiview Clustering With Flexible Locality Structure Diffusion[J]. IEEE Transactions on Cybernetics, 2020, 51(1): 101-114. |
[1] | 谢光强, 万梓坤, 李杨. 基于分层邻域选择的切换拓扑多智能体系统一致性协议[J]. 广东工业大学学报, 2024, 41(04): 44-51. |
[2] | 陈应瑟, 彭世国, 王永华. 动态事件触发脉冲机制下多智能体系统的拟一致性[J]. 广东工业大学学报, 2024, 41(04): 52-60. |
[3] | 胡然, 彭世国. 基于脉冲观测器的多智能体系统的领导跟随一致性[J]. 广东工业大学学报, 2023, 40(05): 88-93. |
[4] | 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55. |
[5] | 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43. |
[6] | 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77. |
[7] | 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(05): 16-23. |
[8] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[9] | 滕少华, 冯镇业, 滕璐瑶, 房小兆. 联合低秩表示与图嵌入的无监督特征选择[J]. 广东工业大学学报, 2019, 36(05): 7-13. |
[10] | 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96. |
[11] | 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80. |
[12] | 蒋盛益, 王连喜. 聚类分析研究的挑战性问题[J]. 广东工业大学学报, 2014, 31(3): 32-38. |
[13] | 朱婧丽1, 金朝永1, 郭红萍2. 具有参考时变状态的多智能体的H∞一致性[J]. 广东工业大学学报, 2011, 28(3): 83-86. |
[14] | 赵洁; 张鹏; 齐德昱; . 多数据库中间件中分布异构数据缓冲区系统的关键技术[J]. 广东工业大学学报, 2007, 24(03): 64-68. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|