摘要: 纳米制冷剂能否强化管内沸腾换热,El前尚无明确的结论.将配制0.1 g/L的CNTs/R141b纳米制冷剂在内径为8.12 mm的水平光滑圆管内进行沸腾换热实验,光管采用电加热丝进行恒热流密度加热.纳米制冷剂采用HCFC141b混加碳纳米管,体积密度为0.1 dE.实验测试范围为:(i)质量流速为95.7~382.9 kg/(ITI ·S);(ii)热流密度为5~20 kW/m ;(iii)人口干度为0.1~0.8.考察了质量流速、千度及热流密度等因素对纳米制冷剂管内沸腾换热的影响.实验结果表明:在低质量流速(95.7 kg/(m ·s))下纳米制冷剂能够强化管内沸腾换热,随着流量及平均干度增加,纳米制冷剂强化换热的效果将会变小,甚至引起换热恶化.
[1]毕胜山,史琳.纳米流体沸腾传热研究进展[J].化工进展,2007,26(10):1411-1418.[2]林宗虎,汪军,李瑞阳.强化传热技术[M].北京:化学工业出版社,2006.[3]Choi S U S.Enhancing thermal conductivity of fluids with nano—particles[J].ASME FED,1995,231(66):99-103.[4]李强.纳米流体强化流体传热机理研究[D].南京:南京理工大学动力工程学院,2004.[5]Lee S P,Choi U S.App lication of metallic nanoparticle SUSpension in advanced cooling system[C]∥Known Y,Davis D.Chung H.eds.ASM E Pressure Vessel D iv Publ PVP.New York:ASME,1996:227-234.[6]Wen D S,Ding Y L.Experimental investigation into the pool boiling heat transfer of aqueous Based',/一alumina nanofluids[J].Journal of Nanoparticle Research,2005,7:265-274.[7]Witharana S.Boiling of refrigerants on enhanced surfaces and boiling of nanofluids[D].Sweden:Royal Institute of Technology,Stockholm ,2003.[8]Hao Peng,Guoliang Ding,Weiting jiang.Heat transfer characteristics of refrigerant—based nanofluid flow boiling inside a horizontal smooth tube[J].International journal of refrigeration,2009,3(2):1-12.[9]Das S K,Putra N,Roetzel W.Pool boiling of nano—fluids on horizontal narrow tubes[J].International Journal of Multiphase Flow,2003,29:1237-1247.[1O]李春辉.纳米颗粒悬浮液核态沸腾与传热[D].北京:清华大学热能系,2005.[11]毕胜山,史琳.纳米制冷剂冰箱性能的实验研究[J].清华大学学报:自然科学版,2007,47(11):2002—2005.[12]施明恒,帅美琴,赖彦锷,等.纳米颗粒悬浮液池内泡状沸腾的实验研究[J].工程热物理学报,2006,27(2):298-300.[13]Park Ki Jung,Jung Dongsoo.Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air—conditioning[J].Energy and Buildings,2007,39(9):1061-1064. |
No related articles found! |
|