Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 100-106.doi: 10.12052/gdutxb.170130
Previous Articles Next Articles
Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin
CLC Number:
[1] 黄宜平, 马晓轩. 微电网技术综述(英文)[J]. 电工技术学报, 2015, 30(S1):320-328.HUANG Y P, MA X X. Research on microgrid technology[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):320-328. [2] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1):570-70.YANG X F, SU J, LYU Z P, et al. Overview on micro-grid technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(1):570-70. [3] LASSETER R H. MicroGrids[C]//Power Engineering Society Winter Meeting. USA New York:IEEE, 2002, 1(1):305-308. [4] 钱科军, 周承科, 袁越. 纯电动汽车与电网相互关系的研究现状(英文)[J]. 电网与清洁能源, 2010, 26(11):1-7.QIAN K J, ZHOU C K, YUAN Y. A review of research on the interaction between fully electric vehicles and power syste- ms[J]. Power System and Clean Energy, 2010, 26(11):1-7. [5] 李鹏, 张玲, 王伟, 等. 微网技术应用与分析[J]. 电力系统自动化, 2009, 33(20):109-115.LI P, ZHANG L, WANG W, et al. Application and analysis of microgrid[J]. Automation of Electric Power Systems, 2009, 33(20):109-115. [6] 严凤, 楚非非. 微网多目标动态经济优化调度[J]. 电测与仪表, 2016, 53(9):90-93.YAN F, CHU F F. Microgrid dynamic economic dispatch of multiobjective[J]. Electrical Measurement and Instrumentation, 2016, 53(9):90-93. [7] 苗雨阳, 卢锦玲, 朱国栋. 基于改进多目标粒子群算法的微电网并网优化调度[J]. 电力科学与工程, 2012, 28(7):15-20.MIAO Y Y, LU J L, ZHU G D. Improved multi-objective particle swarm optimization algorithm based scheduling optimization of grid-connected microgrid[J]. Electric Power Science and Engineering, 2012, 28(7):15-20. [8] 杨毅, 雷霞, 徐贵阳, 等. 采用PSO-BF算法的微电网多目标电能优化调度[J]. 电力系统保护与控制, 2014, 42(13):13-20.YANG Y, LEI X, XU G Y, et al. Multi-objective optimal dispatch of microgrid using particle swarm optimization combined with bacterial foraging algorithm[J]. Power System Protection and Control, 2014, 42(13):13-20. [9] 唐巍, 高峰. 考虑用户满意度的户用型微电网日前优化调度[J]. 高电压技术, 2017, 43(1):140-148.TANG W, GAO F. Optimal operation of household microgrid day-ahead energy considering user satisfaction[J]. High Voltage Engineering, 2017, 43(1):140-148. [10] 王璟, 王利利, 郭勇, 等. 计及电动汽车的微电网经济调度方法[J]. 电力系统保护与控制, 2016, 44(17):111-117.WANG J, WANG L L, GUO Y, et al. Microgrid economic dispatch method considering electric vehicles[J]. Power System Protection and Control, 2016, 44(17):111-117. [11] 刘衍民, 邵增珍, 赵庆祯. 基于自适应拥挤网格的多目标粒子群算法[J]. 计算机科学, 2011, 38(4):260-262.LIU Y M, SHAO Z Z, ZHAO Q Z. Multi-objective particle swarm optimizer based on adaptive crowding grid[J]. Computer Science, 2011, 38(4):260-262. [12] 吴亚丽, 徐丽青. 一种基于粒子群算法的改进多目标文化算法[J]. 控制与决策, 2012, 27(8):1127-1132.WU Y L, XU L Q. An improved multi-objective cultural algorithm based on particle swarm optimization[J]. Control and Decision, 2012, 27(8):1127-1132. [13] 周燕, 刘培玉, 赵静, 等. 基于自适应惯性权重的混沌粒子群算法[J]. 山东大学学报(理学版), 2012, 47(3):27-32.ZHOU Y, LIU P Y, ZHAO J, et al. Chaos particle swarm optimization based on the adaptive inertia weight[J]. Journal of Shandong University (Natural Science Edition), 2012, 47(3):27-32. [14] 郭经韬, 陈璟华, 周俊, 等. 基于组合混沌序列动态粒子群算法的电力系统无功优化[J]. 广东工业大学学报, 2014, 31(02):85-89.GUO J T, CHEN J H, ZHOU J, et al. Reactive power optimization based on combined chaotic dynamic particle swarm optimization algorithm[J]. Journal of Guangdong University of Technology, 2014, 31(02):85-89. [15] 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35(14):30-35.MAO M Q, SUN S J, SU J H. Economical analysis of a microgrid with wind/photovoltaic/storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14):30-35. [16] 吴红斌, 侯小凡, 赵波, 等. 计及可入网电动汽车的微网系统经济调度[J]. 电力系统自动化, 2014, 38(9):77-84.WU H B, HOU X F, ZHAO B, et al. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9):77-84. [17] 庄怀东, 吴红斌, 刘海涛, 等. 含电动汽车的微网系统多目标经济调度[J]. 电工技术学报, 2014, 29(S1):365-373.ZHUANG H D, WU H B, LIU H T, et al. Multi-objective economic dispatch of microgrid system considering electric vehicles[J]. Transactions of China Electrotechnical Society, 2014, 29(S1):365-373. |
[1] | Tang Chao-lan, Xie Yi. A Multi-objective Optimization of Milling Parameters for 6061 Aluminum Alloy [J]. Journal of Guangdong University of Technology, 2020, 37(05): 87-93. |
[2] | Zhou Yi-lu, Wang Zhen-you, Li Ye-zi, Li Feng. A Quadratic Scalarizing Function in MOEA/D and its Performance on Multi and Many-Objective Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(04): 37-44. |
[3] | Chen Jing-hua, Qiu Ming-jin, Tang Jun-jie, Tian Ming-zheng, Tan Geng-rui. A Hybrid Algorithm Based on Improved Differential Evolution and Particle Swarm Optimization for Power System Optimal Power Flow Calculation [J]. Journal of Guangdong University of Technology, 2017, 34(05): 22-28. |
[4] | HUANG Mei-hua, WEN Jie-chang, HE Yong. An Improved Artificial Fish Swarm Algorithm for Multi-objective Knapsack Problem [J]. Journal of Guangdong University of Technology, 2016, 33(05): 44-48. |
[5] | Guo Jingtao, Chen Jinghua, Zhou Jun, Xu Weilong. Reactive Power Optimization Based on Combined Chaotic #br# Dynamic Particle Swarm Optimization Algorithm#br# [J]. Journal of Guangdong University of Technology, 2014, 31(2): 85-89. |
[6] | XU Huan, WEN Jie-Chang. Application of Differential Evolution Algorithm in Optimizing the Logistics Distribution Vehicle Routing Problem [J]. Journal of Guangdong University of Technology, 2013, 30(4): 61-64. |
[7] | ZHANG Jin-Feng- , CHEN Wei-Li. Application of Multi-objective Evolutionary Algorithm in the Location of Logistics Distribution Centers [J]. Journal of Guangdong University of Technology, 2010, 27(4): 76-80. |
|