Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 100-106.doi: 10.12052/gdutxb.170130

Previous Articles     Next Articles

Multi-objective Dispatch of Microgrid Based on Dynamic Fuzzy Chaotic Particle Swarm Algorithm

Tang Jun-jie, Chen Jing-hua, Qiu Ming-jin   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-11-30 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

Abstract: A method to deal with dispatch of Microgrid is proposed based on the dynamic fuzzy chaotic particle swarm algorithm. Using dynamic objective function and fuzzy theory to solve the defects of the subjective weight, a microgrid scheduling model is found which aims for lower maintenance cost and environmental pollution. Multi-objective dispatch of microgrid belongs to the multivariable and strongly nonlinear optimization problem. Since the traditional particle swarm algorithm tends to trap in the local superior, in the particle initialization, a chaotic mapping combining the Chebyshev maps and the Logistic map is introduced, and in the process of particle update, the Logistic map is introduced which increases the ergodicity of particles and strengthens global optimization ability of algorithm. According to the value of inertia weight in particle swarm updating, the strategy of changing the inertia weight with the gradient of iteration number adopted. The simulation experiment of multi-objective dispatch of microgrid shows that the algorithm has higher convergence speed and better convergence effect.

Key words: dispatch of microgrid, dynamic fuzzy, chaotic combining mapping, particle swarm optimization algorithm, multi-objective optimization

CLC Number: 

  • TM734
[1] 黄宜平, 马晓轩. 微电网技术综述(英文)[J]. 电工技术学报, 2015, 30(S1):320-328.HUANG Y P, MA X X. Research on microgrid technology[J]. Transactions of China Electrotechnical Society, 2015, 30(S1):320-328.
[2] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1):570-70.YANG X F, SU J, LYU Z P, et al. Overview on micro-grid technology[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(1):570-70.
[3] LASSETER R H. MicroGrids[C]//Power Engineering Society Winter Meeting. USA New York:IEEE, 2002, 1(1):305-308.
[4] 钱科军, 周承科, 袁越. 纯电动汽车与电网相互关系的研究现状(英文)[J]. 电网与清洁能源, 2010, 26(11):1-7.QIAN K J, ZHOU C K, YUAN Y. A review of research on the interaction between fully electric vehicles and power syste- ms[J]. Power System and Clean Energy, 2010, 26(11):1-7.
[5] 李鹏, 张玲, 王伟, 等. 微网技术应用与分析[J]. 电力系统自动化, 2009, 33(20):109-115.LI P, ZHANG L, WANG W, et al. Application and analysis of microgrid[J]. Automation of Electric Power Systems, 2009, 33(20):109-115.
[6] 严凤, 楚非非. 微网多目标动态经济优化调度[J]. 电测与仪表, 2016, 53(9):90-93.YAN F, CHU F F. Microgrid dynamic economic dispatch of multiobjective[J]. Electrical Measurement and Instrumentation, 2016, 53(9):90-93.
[7] 苗雨阳, 卢锦玲, 朱国栋. 基于改进多目标粒子群算法的微电网并网优化调度[J]. 电力科学与工程, 2012, 28(7):15-20.MIAO Y Y, LU J L, ZHU G D. Improved multi-objective particle swarm optimization algorithm based scheduling optimization of grid-connected microgrid[J]. Electric Power Science and Engineering, 2012, 28(7):15-20.
[8] 杨毅, 雷霞, 徐贵阳, 等. 采用PSO-BF算法的微电网多目标电能优化调度[J]. 电力系统保护与控制, 2014, 42(13):13-20.YANG Y, LEI X, XU G Y, et al. Multi-objective optimal dispatch of microgrid using particle swarm optimization combined with bacterial foraging algorithm[J]. Power System Protection and Control, 2014, 42(13):13-20.
[9] 唐巍, 高峰. 考虑用户满意度的户用型微电网日前优化调度[J]. 高电压技术, 2017, 43(1):140-148.TANG W, GAO F. Optimal operation of household microgrid day-ahead energy considering user satisfaction[J]. High Voltage Engineering, 2017, 43(1):140-148.
[10] 王璟, 王利利, 郭勇, 等. 计及电动汽车的微电网经济调度方法[J]. 电力系统保护与控制, 2016, 44(17):111-117.WANG J, WANG L L, GUO Y, et al. Microgrid economic dispatch method considering electric vehicles[J]. Power System Protection and Control, 2016, 44(17):111-117.
[11] 刘衍民, 邵增珍, 赵庆祯. 基于自适应拥挤网格的多目标粒子群算法[J]. 计算机科学, 2011, 38(4):260-262.LIU Y M, SHAO Z Z, ZHAO Q Z. Multi-objective particle swarm optimizer based on adaptive crowding grid[J]. Computer Science, 2011, 38(4):260-262.
[12] 吴亚丽, 徐丽青. 一种基于粒子群算法的改进多目标文化算法[J]. 控制与决策, 2012, 27(8):1127-1132.WU Y L, XU L Q. An improved multi-objective cultural algorithm based on particle swarm optimization[J]. Control and Decision, 2012, 27(8):1127-1132.
[13] 周燕, 刘培玉, 赵静, 等. 基于自适应惯性权重的混沌粒子群算法[J]. 山东大学学报(理学版), 2012, 47(3):27-32.ZHOU Y, LIU P Y, ZHAO J, et al. Chaos particle swarm optimization based on the adaptive inertia weight[J]. Journal of Shandong University (Natural Science Edition), 2012, 47(3):27-32.
[14] 郭经韬, 陈璟华, 周俊, 等. 基于组合混沌序列动态粒子群算法的电力系统无功优化[J]. 广东工业大学学报, 2014, 31(02):85-89.GUO J T, CHEN J H, ZHOU J, et al. Reactive power optimization based on combined chaotic dynamic particle swarm optimization algorithm[J]. Journal of Guangdong University of Technology, 2014, 31(02):85-89.
[15] 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35(14):30-35.MAO M Q, SUN S J, SU J H. Economical analysis of a microgrid with wind/photovoltaic/storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14):30-35.
[16] 吴红斌, 侯小凡, 赵波, 等. 计及可入网电动汽车的微网系统经济调度[J]. 电力系统自动化, 2014, 38(9):77-84.WU H B, HOU X F, ZHAO B, et al. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9):77-84.
[17] 庄怀东, 吴红斌, 刘海涛, 等. 含电动汽车的微网系统多目标经济调度[J]. 电工技术学报, 2014, 29(S1):365-373.ZHUANG H D, WU H B, LIU H T, et al. Multi-objective economic dispatch of microgrid system considering electric vehicles[J]. Transactions of China Electrotechnical Society, 2014, 29(S1):365-373.
[1] Tang Chao-lan, Xie Yi. A Multi-objective Optimization of Milling Parameters for 6061 Aluminum Alloy [J]. Journal of Guangdong University of Technology, 2020, 37(05): 87-93.
[2] Zhou Yi-lu, Wang Zhen-you, Li Ye-zi, Li Feng. A Quadratic Scalarizing Function in MOEA/D and its Performance on Multi and Many-Objective Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(04): 37-44.
[3] Chen Jing-hua, Qiu Ming-jin, Tang Jun-jie, Tian Ming-zheng, Tan Geng-rui. A Hybrid Algorithm Based on Improved Differential Evolution and Particle Swarm Optimization for Power System Optimal Power Flow Calculation [J]. Journal of Guangdong University of Technology, 2017, 34(05): 22-28.
[4] HUANG Mei-hua, WEN Jie-chang, HE Yong. An Improved Artificial Fish Swarm Algorithm for Multi-objective Knapsack Problem [J]. Journal of Guangdong University of Technology, 2016, 33(05): 44-48.
[5] Guo Jingtao, Chen Jinghua, Zhou Jun, Xu Weilong. Reactive Power Optimization Based on Combined Chaotic #br# Dynamic Particle Swarm Optimization Algorithm#br#  [J]. Journal of Guangdong University of Technology, 2014, 31(2): 85-89.
[6] XU Huan, WEN Jie-Chang. Application of Differential Evolution Algorithm in Optimizing the Logistics Distribution Vehicle Routing Problem [J]. Journal of Guangdong University of Technology, 2013, 30(4): 61-64.
[7] ZHANG Jin-Feng- , CHEN Wei-Li. Application of Multi-objective Evolutionary Algorithm in the Location of Logistics Distribution Centers [J]. Journal of Guangdong University of Technology, 2010, 27(4): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!