Journal of Guangdong University of Technology ›› 2019, Vol. 36 ›› Issue (04): 85-91.doi: 10.12052/gdutxb.180180

Previous Articles     Next Articles

Influence of Prestressed Axial Compression Ratio on Mechanical Properties of Segmental Bridge Piers

Yu Zhi-tao, Pan Hao, He Shao-hua   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 511495, China
  • Received:2018-10-11 Online:2019-06-18 Published:2019-06-18

Abstract: The segmented bridge piers with post-tensioned prestressed joints have the advantages of short construction period, little impact on the environment and easy quality assurance, but their mechanical properties are still unclear. In order to obtain a prestressed axial compression ratio with good mechanical properties, a five-section assembled bridge pier with a section of assembled bridge piers is designed. The finite element model is built and simulated by ABAQUS. The simulation results are obtained. Comparing with the existing test results, the correctness of the simulation method is verified. Then the influence of different prestressed axial compression ratios on the mechanical properties of the segmented bridge pier is analyzed and compared. The results show that the axial compression ratio is 10%~20%. The structure has good mechanical properties. This research can provide a certain reference for the design of segmental bridge piers.

Key words: prestressed precast segmental bridge piers, pre-stressed axial compression ratios, mechanical performance, ABAQUS

CLC Number: 

  • TU318
[1] 葛继平, 闫兴非, 王志强. 机械套筒连接的轨道交通预制拼装桥墩抗震性能试验研究[J]. 地震工程与工程振动, 2017, 37(6):143-152 GE J P, YAN X F, WANG Z Q. Seismic performance analysis of rail transit segmental bridge columns with mechanical splices[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(6):143-152
[2] 郭熙冬. 港珠澳大桥承台墩身工厂化预制施工技术[J]. 桥梁建设, 2014, 44(2):107-111 GUO X D. Construction techniques for factory precasting of pile caps and pier shafts of Hong Kong-Zhuhai-Macao bridge[J]. Bridge Construction, 2014, 44(2):107-111
[3] 曾平喜, 唐衡, 冯永明. 杭州湾跨海大桥预制墩身施工技术[C]//中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集. 杭州:中国公路学会, 2005.
[4] BILLINGTON S. A precast segmental substructure system for standard bridges[J]. Jour Pci, 1999, 44(4):56-73
[5] 田琪, 陈兴冲, 朱东生, 等. 拼装式桥墩接头的承载能力与滞回特性的试验研究[J]. 工程力学, 1999, 16(2):107-113 TIAN Q, CHEN X C, ZHU D S, et al. Experimental Study on loading capacity and hysteretic properties of assembled bridge pier joints[J]. Engineering Mechanics, 1999, 16(2):107-113
[6] CHOU C C, CHEN Y C. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake Engineering & Structural Dynamics, 2010, 35(2):159-175
[7] 叶列平, 林旭川, 汪训流. 预应力混凝土结构的自复位性能与抗震性能[C]//全国混凝土及预应力混凝土学术会议. 长沙:中国土木工程学会, 2007.
[8] 罗海艳. 预应力度对无粘结部分预应力混凝土柱复位性能的影响研究[D]. 扬州:扬州大学, 2008.
[9] 布占宇, 唐光武. 无黏结预应力带耗能钢筋预制节段拼装桥墩抗震性能研究[J]. 中国铁道科学, 2011, 32(3):33-40 BU Z Y, TANG G W. Seismic performance investigation of unbonded prestressing precast segmental bridge piers with energy dissipation bars[J]. China Railway Science, 2011, 32(3):33-40
[10] HAMID N H, MANDER J B. Damage avoidance design for buildings[J]. Ksce Journal of Civil Engineering, 2014, 18(2):541-548
[11] KURAMA Y C, SHEN Q. Seismic design and response evaluation of unbonded post-tensioned hybrid coupled wall structures[J]. Earthquake Engineering & Structural Dynamics, 2010, 37(14):1677-1702
[12] KIM T H, LEE K M, YOON C, et al. Inelastic behavior and ductility capacity of reinforced concrete bridge piers under earthquake numerical validation[J]. Journal of Structural Engineering, 2003, 129(9):1208-1219
[13] Ou Y C, TSAI M S, CHANG K C, et al. Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(11):1181-1198
[14] 高聪. 节段预制拼装混凝土桥墩静力行为研究[D]北京:北京交通大学, 2015.
[15] 庄茁. ABAQUS有限元软件6.4版入门指南[M]. 北京:清华大学出版社, 2004.
[16] 周小军. ABAQUS中弥散裂缝模型与损伤塑性模型的比较[J]. 福建建筑, 2010(5):49-50 ZHOU X J. The comparison of smeared crack model and concrete damage plasticity model in ABAQUS[J]. Fujian Architecture, 2010(5):49-50
[17] 王中强, 余志武. 基于能量损失的混凝土损伤[J]. 建筑材料学报, 2004, 7(4):365-369 WANG Z Q, YU Z W. Concrete damage model based on energy loss[J]. Journal of Building Material, 2004, 7(4):365-369
[18] 潘月辉. 预应力钢筋混凝土梁的有限元分析[J]. 山西建筑, 2005, 31(2):13-15 PAN Y H. Finite element analysis of prestressed reinforced concrete girder[J]. Shanxi Architecture, 2005, 31(2):13-15
[19] 何琳, 王家林. 模拟有效预应力的等效荷载-实体力筋降温法[J]. 公路交通科技, 2015, 32(11):75-80 HE L, WANG J L. Method of equivalent load and temperature reduction on prestressing tendon for effective prestress simulation[J]. Journal of Highway and Transportation Research and Development, 2015, 32(11):75-80
[20] 沈蒲生. 高层建筑结构疑难释义[M]. 北京:中国建筑工业出版社, 2003.
[1] CHEN Dong-Xing, XIONG Rui, WU Jian, XIONG Jia-Qin, LI Xin. Modal Analysis of the Exhaust Manifold Assembly Based on the ABAQUS [J]. Journal of Guangdong University of Technology, 2013, 30(2): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!