Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (02): 87-93.doi: 10.12052/gdutxb.190050
• Comprehensive Studies • Previous Articles Next Articles
Wang Dan-rong, Mo Yan
CLC Number:
[1] LAGARIS I E, LIKAS A, FOTIADIS D I. Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks and Learning Systems, 1998, 9(5):987-1000 [2] MEADE A J J, FERNANDEZ A A. The numerical solution of linear ordinary differential equations by feedforward neural networks[J]. Mathematical & Computer Modelling Math, 1994, 19(12):1-25 [3] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995. [4] AHMED S, KHALID M, AKRAM U. A method for short-term wind speed time series forecasting using support vector machine regression model[C]//20176th International Conference on Clean Electrical Power. Santa Margherita Ligure:IEEE, 2017:190-195. [5] WANG X D. Forecasting short-term wind speed using support vector machine with particle swarm optimization[C]//2017 International Conference on Sensing, Diagnostics, Prognostics and Control. Shanghai:IEEE, 2017:241-245. [6] PAN J, YANG B, CAI S B, et al. Finger motion pattern recognition based on sEMG support vector machine[C]//2017 IEEE International Conference on Cyborg & Bionic Systems. Beijing:IEEE, 2017. [7] WU W, ZHOU H. Data-Driven diagnosis of cervical cancer with support vector machine-based approaches[J]. IEEE Access, 2017, 5:25189-25195 [8] POLAT H, DANAEI M H, CETIN A. Diagnosis of chronic kidney disease based on support vector machine by feature selection methods[J]. Journal of Medical Systems, 2017, 41(4):55 [9] TAIE S A, GHONAIM W. Title CSO-based algorithm with support vector machine for brain tumor's disease diagnosis[C]//2017 IEEE International Conference on Pervasive Computing & Communications Workshops. Kona:IEEE, 2017. [10] MO Y, QIAN T. Support vector machine adapted Tikhonov regularization method to solve Dirichlet problem[J]. Applied Mathematics and Computation, 2014, 245:509-519 [11] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300 [12] MEHRKANOON S, FALCK T, SUYKENS J A K. Approximate solutions to ordinary differential equations using least squares support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9):1356-1367 [13] ZHOU S S, WANG B J, CHEN L. High precision approximate analytical solutions to ODE using LS-SVM[J]. The Journal of China Universities of Posts and Telecommunications, 2018, 25(4):94-102 [14] CASTRO L P, SAITOH S, SAWANO Y, et al. Discrete linear differential equations[J]. International Mathematical Journal of Analysis & Its Applications, 2012, 32(3):181-191 [15] MATSUURA T, SAITOH S, TRONG D D. Numerical solutions of the Poisson equation[J]. Applicable Analysis, 2004, 83(10):1037-1051 [16] SAITOH S. Integral Transforms, Reproducing Kernels and their applications[J]. Journal of Experimental Medicine, 1997, 188(1):39-48 [17] SAITOH S. Approximate real inversion formulas of the gaussian convolution[J]. Applicable Analysis, 2004, 83(7):727-733 [18] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009. [19] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge University Press, 2004. [20] RIEGER C, ZWICKNAGL B. Deterministic error analysis of support vector regression and related regularized kernel methods[J]. Journal of Machine Learning Research, 2006, 10(5):2115-2132 |
[1] | ZHU Yan-fei1,TAN Hong-zhou2,ZHANG Yun1. Blind Nonlinear System Identification Based on LS-SVM [J]. Journal of Guangdong University of Technology, 2007, 24(2): 76-79. |
|