Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (06): 85-91.doi: 10.12052/gdutxb.190064

Previous Articles     Next Articles

Study on Passive Earth Pressure of Retaining Wall in Transversely Isotropic Soil

Chen Tao, Yang Xue-qiang, Liu Pan, Zheng Li-ting, Zhou Ruo-yang   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-05-06 Online:2020-11-02 Published:2020-11-21

Abstract: Most natural soils have the characteristics of transverse isotropy. Using the method of block processing in the same model to discuss the change of passive earth pressure of transverse isotropic soils, based on the principle of least squares and the theory of fabric tensor, the two methods of one-step and multi-step displacement applications are studied to calculate the angle change between the direction of the major principal stress of the soil and the normal direction of the sedimentary surface. New soil strength parameters ci and φi in each block are obtained, and then the change of passive earth pressure under soil anisotropy is analyzed. When reaching the passive limit equilibrium state in the transverse isotropy soil, the research shows that the passive earth pressure obtained by applying multi-step displacement method, which is close to the theoretical solution of Coulomb's passive soil pressure, is smaller than that of applying one-step displacement method. The change of earth pressure is more significant when the sedimentary surface being oblique than that of the sedimentary surface being horizontal. The differences in passive earth pressures obtained under the four type yield criteria are consistent with theoretical analyses.

Key words: transverse isotropic, passive earth pressure, fabric tensor, displacement application, yield criterion

CLC Number: 

  • TU432
[1] 顾慰慈. 挡土墙土压力计算手册[M]. 北京: 中国建材工业出版社, 2004.
[2] TSAGAELIZ V. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface [J]. Soil Mechanics & Foundation Engineering, 1965, 2(4): 197-200.
[3] FANG Y, ISHIBASHI I. Static earth pressures with various wall movements [J]. Journal of Geotechnical Engineering, 1994, 120(8): 317-333.
[4] 陈页开. 挡土墙上土压力的试验研究和数值分析[D]. 杭州: 浙江大学, 2001.
[5] 李秀梅, 蒋明镜. 两种位移模式下挡墙主动土压力的离散元模拟[J]. 地下空间与工程学报, 2010, 6(1): 60-64.
LI X M, JIANG M J. Discrete element simulation of active earth pressure of retaining wall under two displacement modes [J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 60-64.
[6] TATSUOKA F, SAKAMOTO M, KAWAMURA T, et al. Strengthand deformation characterstics of sand in plane strain compression at extremely low pressures [J]. Soils & Foundations, 2008, 26(1): 65-84.
[7] 曾庆有, 周健. 不同墙体位移方式下被动土压力的颗粒流模拟[J]. 岩土力学, 2005(S1): 43-47.
ZENG Q Y, ZHOU J. Particle flow simulation of passive earth pressure under different wall displacement modes [J]. Rock and Soil Mechanics, 2005(S1): 43-47.
[8] 陈页开. 挡土墙上土压力的试验研究与数值分析[J]. 岩石力学与工程学报, 2002(8): 1275.
CHEN Y K. Experimental study and numerical analysis of earth pressure on retaining wall [J]. Chinese Journal of Rock Mechanics and Engineering, 2002(8): 1275.
[9] 杨雪强, 李子生, 燕全会, 等. 横观各向同性岩石类材料的破坏准则[J]. 工程力学, 2012, 29(12): 359-333.
YANG X Q, LI Z S, YAN Q H, et al. Failure criterion of transversely isotropic rock materials [J]. Engineering Mechanics, 2012, 29(12): 359-333.
[10] 杨雪强, 张丽娟, 燕全会, 等. 横观各向同性岩石类材料的破坏准则[J]. 应用力学学报, 2013, 30(3): 304-310.
YANG X Q, ZHANG L J, YAN Q H, et al. Failure criterion of transversely isotropic rock materials [J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 304-310.
[11] 赵伟. 最小二乘法在土体直剪试验中的应用[J]. 武警工程学院学报, 2009(6): 67-68.
ZHAO W. Application of least squares method in direct shear test of Soil [J]. Journal of Armed Police Forces College, 2009(6): 67-68.
[12] 李永刚, 周慧珍. 平移模式挡土墙非极限状态被动土压力有限元分析[J]. 山西水利科技, 2017(4): 1-2.
LI Y G, ZHOU H Z. Finite element analysis of passive earth pressure in non-limit state of translational retaining wall [J]. Shanxi Water Resources Science & Technology, 2017(4): 1-2.
[13] KURUKULASURIYA L C, ODA M, KAZAMA H. Anisotropy of undrained shear strength of an over-consolidated soil by triaxial and plane strain test [J]. Soils and Foundations, 1999, 39(1): 21-29.
[14] 刘亚栋. 考虑土体强度各向异性的边坡稳定性研究[D]. 广州: 广东工业大学, 2018.
[15] 徐日庆, 陈页开, 杨仲轩, 龚晓南. 刚性挡墙被动土压力模型试验研究[J]. 岩土工程学报, 2002(5): 569-575.
XU R Q, CHEN Y K, YANG Z X, et al. Experimental study on passive earth pressure model of rigid retaining wall [J]. Chinese Journal of Geotechnical Engineering, 2002(5): 569-575.
[16] 赵光辉. 某挡土墙土压力有限元分析[J]. 低温建筑技术, 2012, 34(6): 129-130.
ZHAO G H. Finite element analysis of earth pressure on a retaining wall [J]. Cryogenics Technology, 2012, 34(6): 129-130.
[17] 杨雪强, 凌平平, 向胜华. 基于系列Drucker-Prager破坏准则评述土坡的稳定性[J]. 岩土力学, 2009, 30(4): 865-870.
YANG X Q, LING P P, XIANG S H. Study on stability of soil slope based on Drucker-Prager failure criterion [J]. Rock and Soil Mechanics, 2009, 30(4): 865-870.
[1] Liu Ya-dong, Yang Xue-qiang, Xu Lei, Lin Yao-kang, Gong Xing. A Stability Analysis of Slope Considering Strength Anisotropy in Soils [J]. Journal of Guangdong University of Technology, 2018, 35(06): 57-62.
[2] YANG Xue-Qiang-1 , WU Zi-Chao-2 , YANG Zong-Ke-3. On Three Dimensional Finite Element Calculations Concerning Coupling Interaction Between Frame Structure,Raft Foundation and Soil Mass [J]. Journal of Guangdong University of Technology, 2010, 27(4): 9-15.
[3] Yang Xue-qiang1,Ling Ping-ping2,Yang Rui1,Chen Gui-lin3 . Two and Three-dimensional Stability Analyses of Slopes with Local Load on Top Surface(Ⅰ)——Using Strength Reduction Finite Element Method [J]. Journal of Guangdong University of Technology, 2008, 25(4): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!