Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (04): 91-97.doi: 10.12052/gdutxb.190090

Previous Articles     Next Articles

Molecular Probes Targeting TSPO for Neuroinflammatory Imaging

Zang Xiao-hao, Liu Qi-fa, Hu Meng-meng, Chang Yuan-yuan, Xiao Qing-wei, Zhou Wei   

  1. School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-07-05 Online:2020-07-11 Published:2020-07-02

Abstract: Neuroinflammation runs through the whole course of neurodegenerative diseases. In normal physiological state, nerve inflammation contributes to the repair of nervous system damage, while excessive inflammation can cause cellular damage, accelerating the deterioration of neurodegenerative diseases. When nerve inflammation occurs, microglia cells are activated, which makes them a sensitive and specific quantitative indicator to reflect the pathophysiological changes of microglia cells. Nuclide and visible light imaging technologies were used to detect neuroinflammatory targets, and the research progress of molecular probes targeting TSPO targets in recent years was introduced, including nuclide imaging and fluorescence imaging. Finally, the application prospect and market value of the neuroinflammatory molecular probes are summarized and forecasted, which is of certain reference significance for the development of novel neuroinflammatory molecular probes.

Key words: neuroinflammation, translocator protein (TSPO), molecular probes

CLC Number: 

  • R749.16
[1] FREEMAN J M, MCKHANN G M. Degenerative disease of the central nervous system [J]. Advances in Pediatrics, 1969, 16(1): 121-127
[2] CHECK E. Nerve inflammation halts trial for Alzheimer's drug [J]. Nature, 2002, 415(6871): 462-469
[3] 李冬梅, 万春丽, 李继承. 小动物活体成像技术研究进展[J]. 中国生物医学工程学报, 2009, 28(6): 916-921
LI D M, WAN C L, LI J C. Development of small living animal imaging technology [J]. Chinese Journal of Biomedical Engineering, 2009, 28(6): 916-921
[4] 朱淼鑫, 姚明. 小动物活体成像技术的应用[J]. 中国比较医学杂志, 2011, 21(3): 1-5
ZHU M X, YAO M. In vivo imaging technology in small animal [J]. Chinese Journal of Comparative Medicine, 2011, 21(3): 1-5
[5] 周伟, 尹端沚, 汪勇先. 小动物PET[J]. 核技术, 2006, 29(3): 207-213
ZHOU W, YI D Z, WANG Y X. Small animal PET [J]. Nuclear Techniques, 2006, 29(3): 207-213
[6] HAGOOLY A, ROSSIN R, WELCH M J. Small molecule receptors as imaging targets [J]. Handbook of Experimental Pharmacology, 2008, 185(2): 93-102
[7] FRANC B L, ACTON P D, MARI C, et al. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation [J]. Journal of Nuclear Medicine, 2008, 49(10): 1651-1663
[8] LEE H, VILLACRESES N E, RAPOPORT S I, et al. In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation [J]. Journal of Neurochemistry, 2010, 91(4): 936-945
[9] ALAM MM, LEE J, LEE S Y. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases [J]. Nuclear Medicine & Molecular Imaging, 2017, 51(4): 1-14
[10] VASSILIOS P, LAURENT L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma [J]. Experimental neurology, 2009, 219(1): 283-294
[11] HERMANN S, STARSICHOVA A, WASCHKAUB, et al. Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability [J]. Journal of nuclear cardiology, 2012, 19(3): 609-617
[12] TURKHEIMER F E, EDISON P, PAVESE N, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies [J]. Journal of Nuclear Medicine, 2007, 48(1): 158-167
[13] KUMAR A, MUZIK O, SHANDAL V, et al. Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11 C-[R]-PK11195 PET [J]. Journal of Neuroinflammation, 2012, 9(1): 232-235
[14] AURELIJA J. Kinetic analysis and test-retest variability of the radioligand[C] (R)-PK11195 binding to TSPO in the human brain-a PET study in control subjects [J]. Ejnmmi Research, 2012, 2(1): 11-15
[15] MANNING H C, SMITH S M, SEXTON M, et al. A peripheral benzodiazepine receptor targeted agent for in vitro imaging and screening [J]. Bioconjugate Chemistry, 2006, 17(3): 735-740
[16] MATARRESE M, MORESCO R M, CAPPELLI A, et al. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors [J]. Journal of Medicinal Chemistry, 2001, 44(4): 579-585
[17] ZANOTTIF P, ZHANG Y, JENKO K J, et al. Synthesis and evaluation of translocator 18 kDaprotein (TSPO) positron emissiontomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971 [J]. ACS Chemical Neuroscience, 2014, 5(10): 963-971
[18] MILITE C, BARRESI E, DA P E, et al. Exploiting the 4-phenylquinazoline scaffold for the development of high affinity fluorescent probes for the translocator protein (TSPO) [J]. Journal of Medicinal Chemistry, 2017, 11(5): 283-289
[19] ROMEO E, AUTA J, KOZIKOWSKI A P, et al. 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR) [J]. Journal of Pharmacology & Experimental Therapeutics, 1992, 262(3): 971-985
[20] KOZIKOWSKI A P, KOTOULA M, MA D, et al. Synthesis and biology of a 7-nitro-2,1,3-benzoxadiazol-4-yl derivative of 2-phenylindole-3-acetamide: a fluorescent probe for the peripheral-type benzodiazepine receptor [J]. Journal of Medicinal Chemistry, 1997, 40(16): 2435-2439
[21] PRIMOFIORE G, SETTIMO F D, TALIANI S, et al. N, N-Dialkyl-2-phenylindol-3-ylglyoxylamides, a new class of potent and selective ligands at the peripheral renzodiazepine receptor [J]. Journal of Medicinal Chemistry, 2004, 47(7): 1852-1855
[22] TALIANI S, SIMORINI F, SERGIANNI V, et al. New fluorescent 2-phenylindolglyoxylamide derivatives as probes targeting the peripheral-type benzodiazepine receptor? Design, synthesis, and biological evaluation [J]. Journal of Medicinal Chemistry, 2007, 50(2): 404-407
[23] OKUBO T, YOSHIKAWA R, CHAKI S, et al. Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands [J]. Bioorganic & Medicinal Chemistry, 2004, 12(2): 423-438
[24] PROBST K C, IZQUIERDO D, BIRD J. Strategy for improved[C]DAA1106 radiosynthesis and in vivo peripheral benzodiazepine receptor imaging using microPET, evaluation of[C]DAA1106 [J]. Nuclear Medicine & Biology, 2007, 34(4): 439-446
[25] MAEDA J, SUHARA T, ZHANG M R, et al. Novel peripheral benzodiazepine receptor ligand[11C]DAA1106 for PET: an imaging tool for glial cells in the brain [J]. Synapse, 2004, 52(4): 283-291
[26] LAQUINTANA V, DENORA N, LOPEDOTA A, et al. N-Benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N-(6-(7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino) hexyl) acetamide as a new fluorescentprobe for peripheral benzodiazepine receptor and microglial cell visualization [J]. Bioconjugate Chemistry, 2007, 18(5): 1397-1407
[27] BROWN A K, FUJITA M, FUJIMURA Y, et al. Radiation dosimetry and biodistribution in monkey and man of[11C]-PBR28: A PET radioligand to image inflammation [J]. Journal of Nuclear Medicine, 2007, 48(12): 2072-2079
[28] AKSHAY N, MATTIA V, XU X. Test-retest analysis of a non-invasive method of quantifying[11C]-PBR28 binding in Alzheimer’s disease [J]. Ejnmmi Research, 2016, 6(1): 72-79
[29] SELLERI S, BRUNI F, COSTAGLI C, et al. 2-Arylpyrazolo[1,5-a] pyrimidin-3-yl acetamides. New potent and selective peripheral benzodiazepine receptor ligands [J]. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2661-2671
[30] LATROFA A, TRAPANI G, FRANCO M, et al. Synthesis of the[3H] labelled potent and selective peripheral benzodiazepine receptor ligand CB 34 [J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2001, 44(7): 521-528
[31] MATTNER F, KATSIFIS A, STAYKOVA M, et al. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis [J]. European Journal of Nuclear Medicine & Molecular Imaging, 2005, 32(5): 557-563
[32] JENSEN P, FENG L, LAW I, et al. TSPO imaging in glioblastoma multiforme: A direct comparison between[123I]-CLINDE SPECT, [18F]-FET PET, and gadolinium-enhanced MR imaging [J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(9): 1386-1390
[33] FOSS C A, HARPER J S, WANG H, et al. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713 [J]. Journal of Infectious Diseases, 2013, 208(12): 2067-2074
[34] JAMES M L, FULTON RR, VERCOULLIE J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization [J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2008, 49(5): 814-822
[35] SARDAML, ALSACJM, BOISGARD R, et al. Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and[18F]-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms [J]. Journal of Vascular Surgery, 2012, 56(3): 765-773
[36] TANG D, MCKINLEY E T, HIGHT M R, et al. Synthesis and structure-activity relationships of 5,6,7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging [J]. Journal of Medicinal Chemistry, 2013, 56(8): 165-173
[37] LI J, SMITH J A, DAWSON E S, et al. Optimized translocator protein ligand for optical molecular imaging and screening [J]. Bioconjugate Chemistry, 2017, 28(4): 1016-1023
[38] ENDRES C J, POMPER M G, JAMES M, et al. Initial evaluation of[11C]-DPA-713, a novel TSPO PET ligand, in humans [J]. Journal of Nuclear Medicine, 2009, 50(8): 1276-1282
[39] KITA A, KOHAYAKAWA H, KINOSHITA T, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand [J]. British Journal of Pharmacology, 2004, 142(7): 1059-1072
[40] ZHANG M R, KUMATA K, MAEDA J, et al. [11C]-AC-5216: A novel PET ligand for peripheral benzodiazepine receptors in the primate brain [J]. Journal of Nuclear Medicine, 2007, 48(11): 1853-1861
[41] RUPPRECHT R, RAMMES G, ESER D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects [J]. Science, 2009, 325(5939): 490-493
[42] WAGNER S, BREYHOLZ H J, HÖLTKE C, et al. A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: radiosynthesis and initial small-animal PET studies [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2009, 67(4): 606-610
[43] HAIDER A, SPINELLI F, HERDE A M, et al. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue [J]. European Journal of Medicinal Chemistry, 2018, 14(5): 746-752
[44] CHU W, CHEPETAN A, ZHOU D, et al. Development of a PET radiotracer for noninvasive imaging of the reactive oxygen species, superoxide, in vivo [J]. Organic & Biomolecular Chemistry, 2014, 12(25): 4421-4431
[45] PRABHAKARAN J, MAJO V J, SIMPSON N R, et al. Synthesis of[11C] celecoxib: a potential PET probe for imaging COX‐2 expression [J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2005, 48(12): 887-895
[46] BRECKWOLDT M O, CHEN J W, STANGENBERG L, et al. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 185-189
[1] Xie Ling-na, Hang Ping, Du Zhi-yun. An Optimization of Ultrasonic Extraction Process of Tremella Polysaccharides and its Anti-inflammation Effect on BV2 cell [J]. Journal of Guangdong University of Technology, 2021, 38(02): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!