Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (01): 104-110.doi: 10.12052/gdutxb.200017

• Comprehensive Studies • Previous Articles    

Application of Thermal Conductive Silica Gel/Phase Change Material Composite Components in Thermal Management of Batteries

He Lin, Ke Xiu-fang, Zhang Guo-qing, Li Xin-xi   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-31 Online:2021-01-25 Published:2020-12-21

Abstract: The application of a low-temperature thermal conductive silica gel/phase change material composite module in the battery module can effectively solve the problem of phase change material precipitation due to liquefaction, while maintaining the high thermal conductivity and high latent heat value of phase change material. Due to certain elasticity and viscosity of heat-conducting silica gel sheet, the whole system has a certain buffering effect, which reduces the contact thermal resistance between phase-change material and battery, and further improves the heat dissipation performance of the whole system. At 3C discharge rate, the temperature of forced air cooling was 57.99 ℃ compared with 66.63 ℃ of natural cooling. The maximum temperature of PCM(Phase Change Material) cooling mode is 44.78 ℃ and the maximum temperature difference is 3.70 ℃. They were down 32.8 percent and 22.78 percent, respectively. In the 3C discharge rate cycle, the PCM cooling mode battery module has a temperature of 51.45 ℃ after three cycles, which is still within the safe temperature rang.

Key words: polyethylene glycol, contact thermal resistance, heat dissipation performance, temperature difference, cycle

CLC Number: 

  • TM911.3
[1] 梁昌杰. 混合动力车用镶氨电池组散热性能CFD仿真与试验研究[D]. 重庆:重庆大学, 2010.
[2] RAMANDI M Y, DINCER I, NATERER G F. Heat transfer and thermal management of electric vehicle batteries with phase change materials [J]. Heat & Mass Transfer, 2011, 47(7): 777-788.
[3] 张国庆, 马莉, 张海燕, 等. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.
ZHANG G Q, MA L, ZHANG H Y, et al. Heat generation behavior of HEV battery and its thermal management technology [J]. Journal of Guangdong University of Technology, 2008, 25(1): 1-4.
[4] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: a review [J]. Journal of Power Sources, 2016, 306: 178-192.
[5] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries [J]. Journal of Power Sources, 2005, 147(1): 269-281.
[6] JAGUEMONT J, BOULON L, DUBE Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures [J]. Applied Energy, 2016, 164: 99-114.
[7] WEI L, LI Z, DENG Y, et al. Graphene-based materials for electrochemical energy storage devices: opportunities and challenges [J]. Energy Storage Materials, 2016, 2: 107-138.
[8] TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles [J]. Renewable & Sustainable Energy Reviews, 2013, 20(4): 82-102.
[9] ZHANG G S, CAO L, GE S, et al. Situ measurement of radial temperature distributions in cylindrical Li-ion cells [J]. Electrochem Soc, 2014, 16(1): 1499-1507.
[10] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow [J]. International Journal of Heat & Mass Transfer, 2015, 83: 164-172.
[11] 黄倩. 锂离子电池的热效应及其安全性能的研究[D]. 上海: 复旦大学, 2007.
[12] 李哲. 纯电动汽车磷酸铁锂电池性能研究[D]. 北京: 清华大学, 2011.
[13] 王子缘, 张国庆, 高冠勇, 等. 18650圆柱形电芯的产热行为研究[J]. 广东工业大学学报, 2017, 34(1): 45-49.
WANG Z Y, ZHANG G Q, GAO G Y, et al. A study of heat generation behavior of 18650 cylindrical battery [J]. Journal of Guangdong University of Technology, 2017, 34(1): 45-49.
[14] RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II.Capacity fade analysis [J]. Journal of Power Sources, 2002, 112(2): 614-620.
[15] GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life [J]. Journal of Power Sources, 2014, 252: 8-13.
[16] SMITH K, CHAO Y W. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J]. Journal of Power Sources, 2006, 160(1): 662-673.
[17] 刘仲明. 锂离子电池组不一致性及热管理的模拟研究[D]. 天津:天津大学, 2017.
[18] 刘振军, 林国发, 秦大同, 等. 电动汽车铿电池组温度场研究及其结构优化[J]. 汽车工程, 2012, 34(1): 80-84.
LIU Z J, LIN G F, QIN D T, et al. Temperature field study and structural optimization of his battery pack for electric vehicle [J]. Automotive Engineering, 2012, 34(1): 80-84.
[19] HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material [J]. Electrochem Soc, 2000, 147: 3231-3236.
[20] 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157.
YU R B. Application of phase change materials in thermal management of power batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 1148-1157.
[21] 马先锋, 邹得球, 刘小诗, 等. 动力电池热管理用相变材料的研究进展[J]. 化工新型材料, 2017(9): 23-25.
MA X F, ZOU D Q, LIU X S, et al. Research progress of phase change materials for thermal management of power cells [J]. New Materials for Chemical Industry, 2017(9): 23-25.
[22] KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature [J]. Journal of Power Sources, 2015, 183(1): 370-375.
[23] RAO Z H, WANG S F, ZHANG G Q, et al. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion & Management, 2011, 52(12): 3408-3414.
[24] ASHIMA V, SUMANTH S, DIBAKAR R. A comparative study on battery thermal management using phase change material (PCM) [J]. Thermal Science and Engineering Progress, 2019, 11: 74-83.
[25] CHIH Y W, YU S L, CHEN H L. Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management [J]. Journal of Power Sources, 2009, 189(2): 1100-1105.
[26] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electricscooters experimental validation [J]. Journal of Power Sources, 2005, 142(1): 345-353.
[27] SHASHANK A, AJAY K, SHEN W X. A Novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse [J]. Journal of Power Sources, 2018, 378: 759-775.
[28] ABID H, IRFAN H. ABIDI B, et al Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials [J]. International Journal of Thermal Sciences, 2018, 124: 23-35.
[29] QU Z G, LI W Q, TAO W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913.
[30] CHEN K, YU X, TIAN C, et al. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage [J]. Energy Conversion & Management, 2014, 77(8): 13-21.
[31] LI Z, SUN W G, WANG G, et al. Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite [J]. Solar Energy Materials & solar Cells, 2014, 128(9): 447-455.
[32] MIN L, WU Z S, TAN J M. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method [J]. Applied Energy, 2012, 92(2): 456-461.
[1] Peng Mei-chun, Yang Chen, Li Jun-ping, Ye Wei-bin, Huang Wen-wei. A Research on Vehicle Carbon Emission Calculating Method Based on BP Neural Network [J]. Journal of Guangdong University of Technology, 2023, 40(01): 107-112.
[2] Wei You-xing, Luo Xiang-long, Hu Ling-feng, Chen Jian-yong, Liang Ying-zong, Yang Zhi, Chen Ying. Optimization Method of Organic Rankine Cycle System Based on Time Series Aggregation [J]. Journal of Guangdong University of Technology, 2022, 39(06): 98-106.
[3] Luo Jun-wei, Luo Xiang-long, Zheng Xiao-sheng, Chen Jian-yong, Liang Ying-zong, Yang Zhi, Chen Ying. A Simulation Study on Heat Exchanger of Organic Rankine Cycle [J]. Journal of Guangdong University of Technology, 2022, 39(04): 128-134.
[4] Wang Xiao-xia, Ouyang Lu, Zheng Shi-qi, Hu San-gen, Han Shuang. Application of GeoHash and KNN in the Optimization Selection of Shared Bicycle Stops [J]. Journal of Guangdong University of Technology, 2022, 39(03): 1-7.
[5] Peng Mei-chun, Ye Wei-bin, Zou Kang-cong, Li Jun-ping, Huang Wen-wei. An Analysis of NOx and Smoke Purification Effect for Diesel Vehicles Based on Lugdown Cycle [J]. Journal of Guangdong University of Technology, 2022, 39(02): 84-90.
[6] Liang Jun-wei, Luo Xiang-long, Yang Zhi, Liang Ying-zong, Chen Jian-yong, Chen Ying. Selection of Mixtures and Optimization of Organic Rankine Cycle System Based on PC-SAFT [J]. Journal of Guangdong University of Technology, 2022, 39(02): 91-98.
[7] Tu Jun-ping, Huang Ji-kang, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying. An Experimental Study of Axial Uniform Boiling Heat Transfer Characteristics of R245fa in Horizontal Smooth Tube [J]. Journal of Guangdong University of Technology, 2020, 37(06): 71-77.
[8] Zheng Xiao-sheng, Luo Jun-wei, Lu Pei, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying. An Experimental Study of Zeotropic-Mixture Organic Rankine Cycle System Utilizing R1234ze (E)/R245fa [J]. Journal of Guangdong University of Technology, 2020, 37(03): 114-120.
[9] Wang Yu-peng, Luo Xiang-long, Liang Jun-wei, Chen Jian-yong, Yang Zhi, Chen Ying. A Simultaneous Optimization of Working Fluid Design and System Parameters in Organic Rankine Cycle [J]. Journal of Guangdong University of Technology, 2020, 37(01): 69-80.
[10] Qiu Guan-fu, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Chen Ying. An Off-design Optimization of Liquid Separation Condenser-based Organic Rankine Cycle Under Different Ambient Temperature [J]. Journal of Guangdong University of Technology, 2019, 36(06): 99-104,110.
[11] Liang Yue-wei, Liu Li-ru, Qi Rong-hui, Huang Yu, Li Zhi-sheng. A Performance Study of Membrane Liquid Desiccant Air Conditioning System and Carbon Dioxide Transcritical Cycle Heat Pump Integrated System [J]. Journal of Guangdong University of Technology, 2018, 35(01): 61-66.
[12] Cheng Tian, Liu Li-ru, Wang Zhang-yuan, Wang Xiao-xia, Ding Ze-zhi. Simulation Analysis of Heat Pump System in CO2 TranscriticalCycle Applied to Temperature and Humidity Independent Control [J]. Journal of Guangdong University of Technology, 2017, 34(01): 40-44.
[13] TIAN Yu, HUANG Ling, CHEN Gang. Modeling and Simulation of Bicycle Accident Avoidance at Mixed NonSignalized Traffic Intersections Based on NN [J]. Journal of Guangdong University of Technology, 2015, 32(1): 103-108.
[14] Li Xinxi, Yuan Xiaojiao, Zhang Guoqing, Zhang Xinhe, Zhang Lei. Preparation and Properties of Silicon/Graphite Composites as Anode Materials for Lithium Batteries [J]. Journal of Guangdong University of Technology, 2014, 31(2): 27-31.
[15] JIN Xiao-Fan, QIN Hong, DONG Dan. On the Design of Indoor Unit Circulation Air Volume [J]. Journal of Guangdong University of Technology, 2013, 30(2): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!