Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (03): 9-16.doi: 10.12052/gdutxb.200036
Previous Articles Next Articles
Teng Shao-hua, Chen Cheng, Huo Ying-xiang
CLC Number:
[1] TENG S H, WU N Q, ZHU H B, et al. SVM-DT-based adaptive and collaborative intrusion detection [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 5(1): 108-118 [2] SUN Z B, SONG Q B, ZHU X Y, et al. A novel ensemble method for classifying imbalanced data [J]. Pattern Recognition, 2015, 48(5): 1623-1637 [3] GUO H X, LI Y J, JENNIFER S, et al. Learning from class-imbalanced data: review of methods and applications [J]. Expert Systems with Applications, 2017, 73: 220-239 [4] TENG S H, ZHANG Z H, TENG L Y, et al. A collaborative intrusion detection model using a novel optimal weight strategy based on genetic algorithm for ensemble classifier[C]//Proceedings of IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD). Nanjing, China: IEEE, 2018: 761-766. [5] 滕少华, 严远驰, 刘冬宁, 等. 基于FCM-C4.5的双过滤入侵检测机制[J]. 计算机应用与软件, 2016, 33(1): 307-311 TENG S H, YAN Y C, LIU D N, et al. A dual filtration intrusion detection mechanism based on FCM and C4.5[J]. Computer Applications and Software, 2016, 33(1): 307-311 [6] HWANG T S, LEE T J, LEE Y J. A three-tier IDS via data mining approach[C]//Proceedings of the 3rd Annual ACM Workshop on Mining Network Data. San Diego, California, USA: ACM, 2007: 1-6. [7] LI Y, LI J L, YUE S J, et al. Research of intrusion detection based on ensemble learning model [J]. Applied Mechanics and Materials, 2013, 336-338(2): 2376-2380 [8] MAIRAL J, BACH F, PONCE J, et al. Online dictionary learning for sparse coding[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal. Quebec, Canada: IMLS, 2009: 689-696. [9] 滕少华, 卢东略, 霍颖翔, 等. 基于正交投影的降维分类方法研究[J]. 广东工业大学学报, 2017, 34(3): 1-7 TENG S H, LU D L, HUO Y X, et al. Classification method based on dimension reduction [J]. Journal of Guangdong University of Technology, 2017, 34(3): 1-7 [10] BHOWAN U, JOHNSTON M, ZHANG M J, et al. Evolving diverse ensembles using genetic programming for classification with unbalanced data [J]. IEEE Transactions on Evolutionary Computation, 2012, 17(3): 368-386 [11] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems [J]. Neurocomputing, 2014, 135: 32-41 [12] CAO H, LI X L, WOON D Y K, et al. Integrated oversampling for imbalanced time series classification [J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2809-2822 [13] NEKOOEIMEHR I, LAI Y S K. Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets [J]. Expert Systems with Applications, 2016, 46: 405-416 [14] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]// Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000, 29(2): 93-104 [15] INGRE B, YADAV A. Performance analysis of NSL-KDD dataset using ANN[C]//International Conference on Signal Processing and Communication Engineering Systems. Andaman and Nicobar Islands, India: IEEE, 2015: 92-96. [16] 胡臻伟, 施勇, 薛质. 网络入侵检测的机器学习算法评估与比较[J]. 通信技术, 2017, 50(12): 158-163 HU Z W, SHI Y, XUE Z. Evaluation and comparison of machine-learning algorithm for net work intrusion detection [J]. Communications Technology, 2017, 50(12): 158-163 [17] GAIKWAD D, THOOL R C. Intrusion detection system using bagging ensemble method of machine learning[C]//2015 International Conference on Computing Communication Control and Automation. Pune, India: IEEE, 2015: 291-295. [18] SALO F, NASSIF A B, ESSEX A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection [J]. Computer Networks, 2019, 148: 164-175 [19] JIANG L X, LI C Q, WU J, et al. A combined classification algorithm based on C4.5 and NB[C]//ISICA 2008: Proceeding of the Third International Symposium on Computation and Intelligence, LNCV 5370. Berlin: Spring-Verlag, 2008: 350-359. [20] 姚滩, 王娟, 张胜利. 基于决策树与朴素贝叶斯分类的入侵检测模型[J]. 计算机应用, 2015, 35(10): 2883-2885 YAO T, WANG J, ZHANG S L. Intrusion detection model based on decision tree and Naive-Bayes classification [J]. Journal of Computer Applications, 2015, 35(10): 2883-2885 [21] GUO C, PING Y, LIU N, et al. A two-level hybrid approach for intrusion detection [J]. Neurocomputing, 2016, 214: 391-400 [22] LATAH M, TOKER L. An efficient flow-based multi-level hybrid intrusion detection system for software-defined networks[J]. arXiv preprint arXiv: 1806.03875, 2018. [23] HORNG S J, SU M Y, CHEN Y H, et al. A novel intrusion detection system based on hierarchical clustering and support vector machines [J]. Expert Systems with Applications, 2011, 38(1): 306-313 [24] PAJOUH H H, JAVIDAN R, KHAYAMI R, et al. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks [J]. IEEE Transactions on Emerging Topics in Computing, 2019, 7(2): 314-323 [25] KIM G, LEE S, KIM S. A novel hybrid intrusion detection method integrating anomaly detection with misuse detection [J]. Expert Systems with Applications, 2014, 41(4): 1690-1700 [26] CAI J, LUO J W, WANG S L, et al. Feature selection in machine learning: a new perspective [J]. Neurocomputing, 2018, 300: 70-79 [27] JOVIĆ A, BRKIĆ K, BOGUNOVIĆ N. A review of feature selection methods with applications[C]//201538th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, Croatia: IEEE, 2015: 1200-1205. [28] LI J D, CHENG K W, WANG S H, et al. Feature selection [J]. ACM Computing Surveys, 2017, 50(6): 1-45 [29] VENKATESH B, ANURADHA J. A review of feature selection and its methods [J]. Cybernetics and Information Technologies, 2019, 19(1): 3-26 [30] DARSHAN S S, JAIDHAR C. Performance evaluation of filter-based feature selection techniques in classifying portable executable files [J]. Procedia Computer Science, 2018, 125: 346-356 [31] ALJAWARNEH S, ALDWAIRI M, YASSEIN M B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model [J]. Journal of Computational Science, 2018, 25: 152-160 [32] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 1-27 |
[1] | Teng Shao-hua, Lu Dong-lue, Huo Ying-xiang, Zhang Wei. Classification Method Based on Dimension Reduction [J]. Journal of Guangdong University of Technology, 2017, 34(03): 1-7. |
[2] | ZHAO Yu-ming,TENG Shao-hua,ZHANG Wei,WU Nai-qi . The Application of Data Mining Technology in Anomaly Detection [J]. Journal of Guangdong University of Technology, 2005, 22(3): 48-52. |
[3] | ZHAO Yu-ming,ZHANG Wei,TENG Shao-hua. The Study of Bro: a System for Detecting Network Intruder in Real-time [J]. Journal of Guangdong University of Technology, 2005, 22(2): 64-68. |
|