Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (04): 15-20.doi: 10.12052/gdutxb.200052

Previous Articles     Next Articles

A Research on Intelligent Fault Diagnosis of Cluster Printing System Based on SDG

Xie Guang-qiang, Chen Jun-yu, Guo Xiao-quan   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-03-19 Online:2020-07-11 Published:2020-07-11

Abstract: With the development of online shopping, the demand for order printing has increased, and the cluster printing system can effectively improve efficiency. However, the cluster system requires high robustness and reliability, so order monitoring and handling of printing equipment failures have become the core issues of the cluster printing system. The SDG technology with the characteristics of real-time monitoring node data and revealing the fault propagation path is applied to the cluster printing system. The fault diagnosis reasoning rules of the cluster printing system are established, and the “If-Then” form of diagnosis rule base is formed. In addition, an order-full-life tracking model is constructed, and fault tasks are identified and managed in combination with a diagnostic rule base to implement fault task transfer and self-recovery of the cluster printing system.

Key words: intelligent diagnosis, Signed Directed Graph(SDG), life tracking, diagnostic rule base

CLC Number: 

  • TN915.04
[1] 杨岱桦, 雷菊阳, 姚辉. 基于智能控制的机械设备金属结构故障诊断研究[J]. 农业装备与车辆工程, 2020,58(2): 123-126
YANG D H, LEI J Y, YAO H. Research on metal structure fault diagnosis of lifting equipment based on intelligent control [J]. Agricultural Equipment and Vehicle Engineering, 2020,58(2): 123-126
[2] 毛彪, 杨松, 李英顺. 改进动态因果图与模糊推理融合故障诊断方法[J]. 计算机工程与应用, 2020, 56(3): 259-265
MAO B, YANG S, LI Y S. Improved dynamic causality diagram and fuzzy inference fusion fault diagnosis method [J]. CEA, 2020, 56(3): 259-265
[3] ZHANG B, YAN J, TIAN C. Study on fault diagnosis system of diesel engine fuel injection system based on BP neural network[C]// ISECS International Colloquium on Computing, Communication, Control and Management.[S.l]: IEEE Computer Society, 2008.
[4] 李川, 张绍辉, JOSÉ V O. 基于次优网络深度学习的3D打印机故障诊断[J]. 机械工程学报, 2019, 55(7): 73-80
LI C, ZHANG S H, JOSÉ V O. Fault diagnosis for 3D printers using suboptimal networked deep learning [J]. Journal of Mechanical Engineering, 2019, 55(7): 73-80
[5] LEI Y, YANG B, JIANG X, et al. Applications of machine learning to machine fault diagnosis: a review and roadmap [J]. Mechanical Systems and Signal Processing, 2020, 138: 106587
[6] LI Y, ZENG Y, LIU T, et al. Simultaneously learning affinity matrix and data representations for machine fault diagnosis [J]. Neural Networks, 2020, 122: 395-406
[7] 王芳, 帕孜来·马合木提, 张宝伟. 基于符号键合图的多故障诊断方法研究[J]. 现代电子技术, 2018, 41(16): 140-143
WANG F, PAZILA M H, ZHANG B W. Research on multiple fault diagnosis method based on signed bond graph [J]. Modern Electronic Technology, 2018, 41(16): 140-143
[8] 谢光强, 郭小全, 李杨, 等. 微型嵌入式系统故障诊断方法综述[J]. 计算机应用研究, 2019, 36(5): 1281-1285
XIE G Q, GUO X Q, LI Y, et al. Review of fault diagnosis methods for micro-embedded system [J]. Application Research of Computers, 2019, 36(5): 1281-1285
[9] SMAILI R, El H R, ABDELKRIM M N. Fault diagnosis based on graphical tools for multi-energy processes [J]. IFAC Proceedings Volumes, 2014, 47(3): 7073-7078
[10] 吉世明. 基于半定量SDG模型的化工过程故障诊断[D]. 广州: 华南理工大学, 2012.
[11] VEDAM H, VENKATASUBRAMANIAN V. PCA-SDG based process monitoring and fault diagnosis [J]. Control Engineering Practice, 1999, 7(7): 903-917
[12] ZHANG Z Q, WU C G, ZHANG B K, et al. SDG multiple fault diagnosis by real-time inverse inference [J]. Reliability Engineering & System Safety, 2005, 87(2): 173-189
[13] TARIFA E E, SCENNA N J. Fault diagnosis for a MSF using a SDG and fuzzy logic [J]. Desalination, 2003, 152(1): 207-214
[14] 李秀喜, 吉世明. 基于半定量SDG模型的化工过程故障诊断[J]. 清华大学学报(自然科学版), 2012, 52(8): 1112-1115
LI X X, JI S M. Chemical process fault diagnosis using semi-quantitative SDG model [J]. Journal of Tsinghua University (Science and Technology), 2012, 52(8): 1112-1115
[15] VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N. A review of process fault detection and diagnosis,Part II: qualitative models and search strategies [J]. Computers & Chemical Engineering, 2003, 27(3): 313-326
[16] VENKAT V, RAGHUNATHAN R, KEWEN Y, et al. A review of process fault detection and diagnosis, Part I: quantitative model-based methods [J]. Computers & Chemical Engineering, 2003, 27(3): 293-311
[17] PEDRAM M. Power optimization and management in embedded systems[C]//Asia and South Pacific Design Automation Conference, 2001. Yokohama, Japan: IEEE, 2001: 239-244.
[18] 涂刚, 阳富民, 胡惯荣. 嵌入式操作系统综述[J]. 计算机应用研究, 2000(11): 4-9
TU G, YANG F M, HU G R. Overview of embedded operating systems [J]. Journal of Computer Applications, 2000(11): 4-9
[19] 徐超群. 高可用集群系统关键技术的研究与实现[D].南京: 南京航空航天大学, 2014.
[20] 杨恒占, 张可, 钱富才. 基于模糊分层SDG模型的故障推理方法[J]. 计算机系统应用, 2017, 26(4): 104-109
YANG H Z, ZANG K, QIAN F C. Fault reasoning method based on fuzzy hierarchical SDG model [J]. Application of Computer Systems, 2017, 26(4): 104-109
[21] 刘洪刚, 吴建军, 陈小前, 等. 基于SDG的智能故障诊断方法研究[J]. 系统工程与电子技术, 2002, 24(1): 103-104
LIU H G, WU J J, CHEN X Q, et al. Study on the SDG- based intelligent fault diagnosis method [J]. System Engineering and Electronics, 2002, 24(1): 103-104
[22] 王兵, 陈军东. 嵌入式系统掉电保护的一种设计方法[J]. 工业控制计算机, 2005(9): 58-59
WANG B, CHEN J D. A design method for power failure protection of embedded system [J]. Industrial Control Computer, 2005(9): 58-59
[23] 翁海勇, 俞加明, 叶大鹏. 基于LM358的单片机掉电保护系统设计与实现[J]. 电子世界, 2013(4): 3
WENG H Y, YU J M, YE D P. Design and implementation of a single chip power-down protection system based on LM358 [J]. Electronic World, 2013(4): 3
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!