Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (02): 60-65.doi: 10.12052/gdutxb.200109
• Comprehensive Studies • Previous Articles Next Articles
Zhou Yun, Wei Xue-mei
CLC Number:
[1] 崔尚斌. 肿瘤生长的自由边界问题[J]. 数学进展, 2009, 38(1): 1-18. CUI S B. Free boundary problems modeling tumor growth [J]. Advances in Mathematics, 2009, 38(1): 1-18. [2] DRASDO D, HÖHME S. A single cell based model of tumor growth in vitro: monolayers [J]. Physical Biology, 2005, 2(3): 133. [3] KIM J B, STEIN R, O'HARE M J. Three-dimensional in vitro tissue culture models for breast cancer-a review [J]. Breast Cancer Research & Treatment, 2004, 85(3): 281-291. [4] KYLE A H, CHAN C T O, MINCHINTON A I. Characterization of three-dimensional tissue cultures using impedance spectroscopy [J]. Biophysical Journal, 1999, 76(5): 2640-2648. [5] MUELLER-KLIESER W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications [J]. American Journal of Physiology Cell Physiology, 1997, 273(4): 1109-1123. [6] ADAM J A, BELLOMO N. A survey of models for tumor-immune system dynamics[M]. Boston: Birkhäuser, 1997: 89-133. [7] SUTHERLAND R M. Cell and enviroment interactions in tumor microregions: the multicell spheroid model [J]. Science, 1998, 240(4849): 177-184. [8] CUI S B, FRIEDMAN A. A hyperbolic free boundary problem modeling tumor growth [J]. Interfaces and Free Boundaries, 2003, 5(2): 159-182. [9] CUI S B, WEI X M. Global existence for a parabolic-hyperbolic free boundary problem modelling tumor growth [J]. Acta Mathematicae Applicate Sinica, English Series, 2005, 21(4): 597-614. [10] WEI X M, CUI S B. Global well-posedness for a drug transport model in tumor multicell spheroids [J]. Mathematical & Computer Modelling, 2007, 45(5-6): 553-563. [11] FRIEDMAN A, LAM K. Analysis of a free boundary tumor model with angiogenssis [J]. Journal of Differential Equations, 2015, 259(12): 7636-7661. [12] 沈海双. 带有Robin 自由边界条件的肿瘤生长模型的定性分析[D]. 广州: 广东工业大学, 2019. [13] PETTET G J, PLEASE C P, TINDALL M J, et al. The migration of cells in multicell tumor spheroids [J]. Bulletin of Mathematical Biology, 2001, 63(2): 231-257. [14] PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. New York: Springer, 1967: 1-3. |
[1] | Liang Xiao-zhen, Wei Xue-mei. Existence of the Solution to the Metabolic Model of Colon Cancer Cells [J]. Journal of Guangdong University of Technology, 2019, 36(05): 38-42. |
[2] | Chen Mei-gui, Wei Xue-mei. Existence and Uniqueness of Global Solution for a Model of Retinal Oxygen Distribution and the Role of Neuroglobin [J]. Journal of Guangdong University of Technology, 2018, 35(05): 45-50. |
[3] | LU Chuang-Ye,WEI Xue-Mei. Existence and Uniqueness of Global Solution to a Mathematical Model of Retinal Vascular Tumors [J]. Journal of Guangdong University of Technology, 2016, 33(03): 70-75. |
|