Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 48-54.doi: 10.12052/gdutxb.200111

Previous Articles     Next Articles

Visual Odometry Based on Sparse Direct Method Loop-Closure Detection

Ru Shao-nan, He Yuan-lie, Ye Xing-yu   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-09-04 Online:2021-05-10 Published:2021-03-12

Abstract: The visual odometry plays a key role in the positioning and navigation of mobile robots, but the current algorithm still has room for improvement in terms of running speed, trajectory accuracy, and robustness. In order to improve the accuracy of camera trajectory, a loop-closure detection algorithm is proposed based on the sparse direct method. The algorithm directly extracts two features to form a hybrid feature point to improve the robustness of the system. The hybrid feature point is used to track and match key frames, so that the visual odometry can detect closed loops, and then the pose map is used to optimize the positioning accuracy. Experimental results show strong robustness in a complex environment and a balance between speed and accuracy.

Key words: visual odometry, loop-closure detection, sparse direct method, visual feature, camera trajectory

CLC Number: 

  • TP249
[1] TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: a survey from 2010 to 2016 [J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 16-26.
[2] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//2007 6th IEEE and ACM international symposium on mixed and augmented reality. Nara: IEEE, 2007: 225-234.
[3] GOMEZ-OJEDA R, MORENO F A, ZUÑIGA-NOËL D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments [J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.
[4] MUÑOZ-SALINAS R, MEDINA-CARNICER R. UcoSLAM: simultaneous localization and mapping by fusion of key points And squared planar markers [J]. Pattern Recognition, 2020, 101: 107-193.
[5] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system [J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
[6] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: Fast semidirect monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). Hong Kong: IEEE, 2014: 15-22.
[7] 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(4): 35-41.
CEN S J, HE Y L, CHEN X C. A monocular depth estimation combined with attention and unsupervised deep learning [J]. Journal of Guangdong University of Technology, 2020, 37(4): 35-41.
[8] ANGELI A, FILLIAT D, DONCIEUX S, et al. Fast and Incremental method for loop-closure detection using bags of visual words [J]. IEEE Transactions on Robotics, 2008, 24(5): 1027-1037.
[9] 何元烈, 陈佳腾, 曾碧. 基于精简卷积神经网络的快速闭环检测方法[J]. 计算机工程, 2018, 44(6): 182-187.
HE Y L, CHEN J T, ZENG B. Fast closed loop detection method based on simplification convolutional neural network [J]. Computer Engineering, 2018, 44(6): 182-187.
[10] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International ConfeRence on Computer Vision. Barcelona: IEEE, 2011: 2564-2571.
[11] GÁLVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences [J]. IEEE Transactions on Robotics, 2012, 28(5): 1188-1197.
[12] GAO X, WANG R, DEMMEL N, et al. LDSO: direct sparse odometry with loop closure[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 2198-2204.
[13] KÜMMERLE R, GRISETTI G, STRASDAT H, et al. g2o: A general framework for graph optimization[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 3607-3613.
[14] MUR-ARTAL R, TARDÓS J D. Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras [J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[15] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets [J]. The International Journal of Robotics Research, 2016, 35(10): 1157-1163.
[16] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3): 611-625.
[17] ELVIRA R, TARDÓS J D, MONTIEL J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau: IEEE, 2019: 6253-6259.
[1] Ma Xiao-dong, Zeng Bi, Ye Lin-feng. An Improved Visual Odometry/SINS Integrated Localization Algorithm Based on BA [J]. Journal of Guangdong University of Technology, 2017, 34(06): 32-36.
[2] Chi Peng-ke, Su Cheng-yue. A Research on Monocular Visual Odometry for Mobile Robots [J]. Journal of Guangdong University of Technology, 2017, 34(05): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!