Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (03): 91-96.doi: 10.12052/gdutxb.200152

Previous Articles     Next Articles

An Elevation Accuracy Analysis of AW3D30, SRTM3 and ASTER GDEM under Different Terrain Conditions

Wei De-hong1, Cui Jia-wu2   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China
  • Received:2020-11-20 Online:2021-05-10 Published:2021-03-31

Abstract: The elevation accuracy of AW3D30 SRTM3 v4.1 and ASTER GDEM V3 are analyzed through the area of the mountainous hills in parts of Guangdong. The data of 730 km lines along Guangzhou, Huizhou, Shaoguan and Qingyuan are collected by vehicle dynamic PPP, the WGS84 coordinates of dynamic points calculated by CSRS-PPP positioning service system, geodetic height of dynamic points converted into normal height by gravity field model EIGEN-6C4, and finally, the elevation of three digital elevation models are checked. The results show that the average errors of AW3D30, SRTM3 v4.1 and ASTER GDEM V3 are, respectively, 0.55, 0.17 and 1.59 m, and the root mean square 3.78, 5.84 and 8.88 m. The average error amplitude of AW3D30 in different altitudes is relatively small, within 2.18 m; the average error of SRTM3 v4.1 has a negative correlation with altitude, and the average error gradually changes from positive value to negative value with the increase of altitude; the average error of ASTER GDEM V3 is within (0 m, 2.18 m] altitude range and is about 2 m and -2.28 m in (250 m, 800 m] range. The root mean square error and standard deviation of AW3D30 decrease with the increase of altitude, while SRTM3 v4.1 increases with the increase of altitude. ASTER GDEM V3 has no significant rule, which is better than 7.69 m in (100 m, 250 m], and better than 9.86 m in other regions.

Key words: digital elevation model, dynamic PPP, EIGEN-6C4, elevation accuracy, altitude range

CLC Number: 

  • P228.1
[1] 汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1305-1325.
TANG G A. Progress of DEM and digital terrain analysis in China [J]. Acta Geographica Sinica, 2014, 69(9): 1305-1325.
[2] ULLAH S, FAROOQ M, SARWAR T, et al. Flood modeling and simulations using hydrodynamic model and ASTER DEM—a case study of Kalpani River [J]. Arabian Journal of Geosciences, 2016, 9(6): 439(page1-11).
[3] 闵柯. 全球数字高程模型数据在国外铁路勘测设计中的应用[J]. 铁道勘察, 2019, 45(3): 16-19.
MIN K. Analysis of application of global digital elevation model data to foreign railway survey and design [J]. Railway Investigation and Surveying, 2019, 45(3): 16-19.
[4] 杨海龙. 利用数字摄影测量技术快速更新机载激光雷达DEM的方法研究[J]. 经纬天地, 2019(3): 27-31.
YANG H L. Research method of rapidly updating airborne LiDAR DEM using digital photogrammetry technology [J]. Survey World, 2019(3): 27-31.
[5] 万杰, 廖静娟, 许涛, 等. 基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J]. 国土资源遥感, 2015, 27(1): 100-105.
WAN J, LIAO J J, XU T, et al. Accuracy evaluation of SRTM data based on ICESat / GLAS altimeter data: a case study in the Tibetan Plateau [J]. Remote Sensing for Land & Resources, 2015, 27(1): 100-105.
[6] ZHAO S, CHENG W, ZHOU C, et al. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: an example in the Loess Plateau and North China Plain of China [J]. International Journal of Remote Sensing, 2011, 32(23): 8081-8093.
[7] 于子钧, 刘斌, 姜琦刚, 等. 基于RTK的高程数据对比分析[J]. 世界地质, 2019, 38(2): 549-555.
YU Z J, LIU B, JIANG Q G, et al. Comparison and analysis of elevation data based on RTK [J]. Global Geology, 2019, 38(2): 549-555.
[8] 李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2009.
[9] HIRT C. Efficient and accurate high-degree spherical harmonic synthesis of gravity field Functionals at the Earth’s surface using the gradient approach [J]. Journal of Geodesy, 2012, 86(9): 729-744.
[10] 袁小棋, 李国元, 高小明, 等. AW3D 30 m DSM数据质量分析及部分典型区域精度验证[J]. 测绘与空间地理信息, 2018, 41(4): 98-101.
YUAN X Q, LI G Y, GAO X M, et al. Evaluation of AW3D 30 m DSM data elevation quality and precision validation of typical region [J]. Geomatics & Spatial Information Technology, 2018, 41(4): 98-101.
[11] RODRIGUEZ E, MORRIS C S, BELZ J E. A global assessment of the SRTM performance [J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3): 249-260.
[12] 李鹏, 李振洪, 施闯, 等. 中国地区30 m分辨率SRTM质量评估[J]. 测绘通报, 2016(9): 24-28.
LI P, LI Z H, SHI C, et al. Quality evaluation of 1 arc second version SRTM DEM in China [J]. Bulletin of Surveying and Mapping, 2016(9): 24-28.
[13] 崔家武, 张兴福, 王峰, 等. GNSS精密单点定位成果的框架与历元转换方法[J]. 大地测量与地球动力学, 2018, 38(2): 172-175.
CUI J W, ZHANG X F, WANG F, et al. Method research on reference frame and epoch transformation of GNSS precise point positioning Result [J]. Journal of Geodesy and Geodynamics, 2018, 38(2): 172-175.
[14] 许耿然, 周建营, 朱紫阳. 广东地区最优地球重力场模型的选择及精度分析[J]. 大地测量与地球动力学, 2013, 33(5): 25-28.
XU G R, ZHOU J Y, ZHU Z Y. Choice and accuracy analysis of optimal earth gravity field model in Guangdong region [J]. Journal of Geodesy and Geodynamics, 2013, 33(5): 25-28.
[15] 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8): 1108-1115.
WU W J, ZHANG S F, ZHAO S M. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 data [J]. Journal of Geo-information Science, 2017, 19(8): 1108-1115.
[1] Chen Wen-bin, Wang Hua, Alex Hay-Man Ng. A Comparison of 1" and 3" SRTM DEM on InSAR Deformation Monitoring in the Pearl River Delta [J]. Journal of Guangdong University of Technology, 2018, 35(02): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!