Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (05): 68-74.doi: 10.12052/gdutxb.200169
Previous Articles Next Articles
Li Yue-zhu1, Huang Xing-wen1, Liao Song-yi2, Liu Yi-dong1, Min Yong-gang1
CLC Number:
[1] WITTINGHAM M S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104(10): 4271-4301. [2] LIUW, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries [J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. [3] MANTHIRAM A, SONG B, LI W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries [J]. Energy Storage Materials, 2017, 6: 125-139. [4] AHN Y K, PARK J, SHIN D, et al. Enhanced electrochemical capabilities of lithium-ion batteries by structurally ideal AAO separator [J]. Journal of Materials Chemistry A, 2015, 3(20): 10715-10719. [5] ROZIER P, TARASCO J M. Review Li-rich layered oxide cathodes for next generation Li-ion batteries: chances and challenges [J]. Journal of the Electro-chemical Society, 2015, 162(14): A2490-A2499. [6] 朱灿, 林豪慧, 向林芳. 新能源汽车领域研究进展及前沿动态基于CitespaceⅢ知识图谱分析[J]. 广东工业大学学报, 2020, 37(2): 45-52. ZHU C, LIN H H, XIANG L F. Research process and forward trends of new energy vehicles based on the knowledge map analysis of cite spaceⅢ [J]. Journal of Guangdong University of Technology, 2020, 37(2): 45-52. [7] DARCOVICH K, HENQUIN E R, KENNEY B, et al. Higher-capacity lithium-ion battery chemistries for improved residential energy storage with micro-cogeneration [J]. Applied Energy, 2013, 111: 853-861. [8] KOJIMA T, ISHIZU T, HORIBA T, et al. Development of lithium-ion battery for fuel cell hybrid electric vehicle application [J]. Journal of Power Sources, 2009, 189(1): 859-863. [9] SCHIPPER F, ERICKSON E M, ERK C, et al. Review-recent advances and remaining challenges for lithium-ion battery cathodes [J]. Journal of the Electro-chemical Society, 2017, 164(1): A6220-A6228. [10] SUN Y K, KANG H B, MYUNG S T, et al. Effect of manganese content on the electrochemical and thermal stabilities of LiNi0.58Co0.28-xMn0.14+xO2 cathode materials for lithium-ion batteries [J]. Journal of the Electrochemical Society, 2010, 157(12): A1335-A1340. [11] LEE B R, NOH H J, MYUNG S T, et al. High-voltage performance of LiNi0.55Co0.15Mn0.30 O2 positive electrode material for rechargeable Li-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(2): A180-A186. [12] 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题(VⅡ)——正极材料[J]. 储能科学与技术, 2014, 3(1): 53-65. MA C, LYU Y C, LI H. Basic scientific issues of lithium-ion batteries (VⅡ)cathode materials [J]. Energy Storage Science and Technology, 2014, 3(1): 53-65. [13] LUO S, WANG K, WANG J, et al. Binder free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries [J]. Advanced Materials, 2012, 43(30): 2294-2298. [14] TANG D, SUN Y, YANG Z, et al. Surface structure evolution of LiMn2O4cathode material upon charge/discharge [J]. Chemistry of Materials, 2014, 26(11): 3535-3543. [15] OLJACA M, BLIZANAC B, PASQUIER A D, et al. Novel Li (Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteries [J]. Journal of Power Sources, 2014, 248: 729-738. [16] 朱晓栋, 金嘉麟. 后处理工艺对磷酸铁锂正极材料性能的影响[J]. 日用电器, 2018, 43(04): 38-41. ZHU X D, JIN J L. The effect of post-treatment process on the performance of lithium iron phosphate cathode material [J]. Daily Appliance, 2018, 43(04): 38-41. [17] BAK S M, NAM K W, LEE C W, et al. Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(43): 17309-17315. [18] 刘小虹, 李国敏. 高电压钴酸锂正极材料掺杂、包覆及复合改性[J]. 电池工业, 2019, 23(6): 314-318. LIU X H, LI G M. Doping, coating and composite modification of high voltage lithium cobalt oxide cathode materials [J]. Battery Industry, 2019, 23(6): 314-318. [19] 吴宇平. 锂离子电池. 应用与实践[M]. 2版. 北京: 化学工业出版社, 2012. [20] ZHANG H, ZHAO H, KHAN M A, et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries [J]. Journal of Materials Chemistry A, 2018, 6: 20564-20620. [21] GUO Z, GAOL, XU Z, et al. High electrical conductivity 2D MXene Serves as additive of Perovskite for Efficient solar cells [J]. Small, 2018, 14(47): 10719-10726. [22] XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage [J]. Journal of Alloys & Compounds An Inter-disciplinary Journal of Materials Science & Solid State Chemistry & Physics, 2018, 748: 561-568. [23] LV C, YANG J, PENG Y, et al. 1DNb-doped LiNi1/3Co1/3Mn1/3O nano-structures as excellent cathodes for Li-ion battery [J]. Electrochimica Acta, 2018, 297: 258-266. [24] LI X, ZHANG K J, WANG M S, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 [J]. Sustain-able Energy & Fuels, 2018, 10(2): 413-4241. [25] BI Y, YANG W, PENG Z, et al. Imp-roved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5 V [J]. Ceramics International, 2015, 41(5): 7133-7139. [26] LIAO S Y, HUANG X W, RAO Q S, et al. A multifunctional MXene additive for enhancing the Mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium-ion batteries [J]. Journal of Materials Chemistry A, 2020, 8: 4494-4504. [27] TIAN R, ZHOU Y, DUAN H, et al. MOF-derived hollow Co3S4 quasi-polyhedron/MWCNT nano-composites as electrodes for advanced lithium ion batteries and supercapacitors [J]. ACS Applied Energy Materials, 2018, 1(2): 402-410. [28] LIU X, CHEN Q, LI Y, et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high nickel ternary NCM811 cathode materials [J]. Journal of the Electrochemical Society, 2019, 166(14): A3480-A3486. [29] KIM H B, PARK B C, MYUNG S T, et al. Electrochemical and thermal characterization of AlF3-coated LiNi0.8Co0.15Al0.05 O2 cathode in lithium-ion cells [J]. Journal of Power Sources, 2008, 179(1): 347-350. [30] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials [J]. Materials Letters, 2013, 110: 4-9. [31] TANG W, CHEN Z, XIONG F, et al. An effective etching-induced coating strategy to shield LiNi0.80Co0.1Mn0.1O2 electrode materials by LiAlO2 [J]. Journal of Power Sources, 2019, 42: 246-254. [32] LEE S H, PARK G J, SIM S J, et al. Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode-via SiO2 coating [J]. Journal of Alloys andCompounds, 2019, 791: 193-199. [33] CHAE B J, YIM T. Effect of surfacemodification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials [J]. Materials Chemistry and Physics, 2018, 214: 66-72. [34] BELHAROUAK I, SUN Y K, LIU J, et al. Li (Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J]. Journal of Power Sources, 2003, 123(2): 247-252. [35] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料[M]. 北京: 化学工业出版社, 2015. [36] 张翔, 王春雷, 孔继周, 等. 浅析共沉淀法合成锂电池层状Li-Ni-Co-Mn-O正极材料[J]. 化工进展, 2014, 33(11): 2991-2999. ZHANG X, WANG C L, KONG J Z, et al. Analysis on the synthesis offlayered Li-Ni-Co-Mn-O cathode materials for lithium batteries by coprecipitation method [J]. Chemical Industry Progress, 2014, 33(11): 2991-2999. [37] 王兆翔, 陈立泉, 黄学杰. 锂离子电池正极材料的结构设计与改性[J]. 化学进展, 2011, 23(Z1): 284-301. WANG Z X, CHEN L Q, HUANG X J. Structural design and modification of cathode materials for lithium-ion batteries [J]. Progress in Chemistry, 2011, 23(Z1): 284-301. [38] 李军, 刘建军, 李少芳, 等. 锂离子电池三元正极材料镍钴铝酸锂的研究进展[J]. 化工新型材料, 2016, 44(6): 49-51. LI J, LIU J J, LI S F, et al. Research progress of nickel cobalt Lithium-aluminate as ternary cathode material for lithium-ion batteries [J]. New Chemical Materials, 2016, 44(6): 49-51. [39] 陈永, 杜宝东, 陆杨. 一种放射状结构球形NCM811型三元正极材料的制备方法. CN110330060A [P]. 2019-10-15. [40] 冯耀华. 高镍型锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2制备及改性[D]. 兰州: 兰州理工大学, 2020. [41] 刘治芳. 简单金属氧化物对高镍层状正极材料LiNi0.8Co0.1Mn0.1O2的表面包覆研究[D]. 天津: 天津大学, 2018. [42] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials [J]. Materials Letters, 2013, 110(1): 4-9. [43] JAEPHIL C T, JISUK K, MIJUNG N, et al. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode Materials for a Li-ion cell [J]. Journal of The Electrochemical Society, 2004, 151(11): A1899-A1904. [44] XIAO Z, HU C, SONG L, et al. Modification research of LiAlO2-Coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery [J]. Ionics, 2017, 24(1): 91-98. [45] WOO S G, HAN J H, KIM K J, et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries [J]. Electrochimica Acta, 2015, 153: 115-121. [46] HUANG J, FANG X, WUY, et al. Enhanced electrochemical performance of LiNi0.8CO0.1Mn0.1O2 by surface modification with lithium active MoO3 [J]. Journal of Electro-analytical Chemistry, 2018, 823: 359-367. [47] LI L J, WANGZ X, LIU Q C, et al. Effects of chromium on the structural surface chemistry and electrochemicalof layered LiNi0.8xCo0.1Mn0.1CrxO2 [J]. Electrochimica Acta, 2012, 77: 89-96. [48] VU D L, LEE J W. Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability [J]. Journal of Solid State Electro-chemistry, 2017, 22: 1165-1173. [49] WOO S W, MYUNG S T, BANG H, et al. Improvement of electro-chemical and thermal properties of LiNi0.8Co0.1Mn0.1O2 positive electrode materials by multiple metal (Al, Mg) substitution [J]. Electrochimica Acta, 2009, 54(15): 3851-3856. [50] CHAE B J, JUNG Y E, LEE C Y, et al. Metal organic framework as a multifunctional additive for selectively trapping transition-metal componcnts in lithium-ionbatteries [J]. Sustainable Chemistry & Engineering, 2018, 6(7): 8547-8553. [51] FAN Q, YANG S, LIU J, et al. Mixed conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium-ion batteries [J]. Journal of Power Sources, 2019, 421(1): 91-99. [52] RAO Q S, LIAO S Y, HUANG X W, et al. Assembly of MXene/PP separator and its enhancement for Ni-rich LiNi0.8Co0.1Mn0.1O2 electro-chemical performance [J]. Polymers, 2020, 12(10): 2192-2202. |
No related articles found! |
|