Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (05): 52-58.doi: 10.12052/gdutxb.210005

Previous Articles     Next Articles

Design and Parameter Evaluation of a Novel Type Flexible Gripper with Characteristic of Limited Output-force Protection

Ding Bing-xiao1, Li Xuan1, Lu Song2, Zhao Ji-yu1   

  1. 1. School of Physics and Electromechanical Engineering, Jishou University, Jishou 416000, China;
    2. Faculty of Science and Technology, University of Macau, Macau 999078, China
  • Received:2021-01-12 Online:2021-09-10 Published:2021-07-13

Abstract: Flexible grippers are widely used in micromanipulation system due to their capability of micro/nano resolution. However, it cannot avoid damaging the grasped object for the gripper cannot provide a constant output force or the limited range constant force. To solve these issues, a flexible gripper with constant force characteristic was designed based on an amplification module and a constant force module with series- structure. Based on the pseudo-rigid body method, the stiffness and magnification ratio model of the bridge type mechanism and the lever mechanism were established. The relationship between the force and displacement of the inclined guide beam was obtained with 42.5 N constant output force and 370 μm output range. Finally, the effect of each parameter on the constant force characteristics was analyzed with MATLAB. The research results can provide some theoretical guidance for the configuration design of flexible constant force grippers.

Key words: flexible gripper, constant force mechanism, inclined guide beam, bi-stable mechanism

CLC Number: 

  • TH112
[1] 丁严, 赖磊捷. 大行程无寄生位移柔性压电微夹钳结构设计[J]. 压电与声光, 2019, 41(4): 562-565.
DING Y, LAI L J. Structural design of flexible piezoelectric micro-gripper without parasitic displacement in large stroke [J]. Piezoeletrics & Acoustooptics, 2019, 41(4): 562-565.
[2] 张成, 褚金奎, 张然, 等. 柔性微夹钳的拓扑优化设计及制作工艺[J]. 机械设计与研究, 2010, 26(5): 44-46.
ZHANG C, CHU J K, ZHANG R, et al. Topology optimized design and microfabrication of compliant microgripper [J]. Machine Design and Research, 2010, 26(5): 44-46.
[3] MATTEO V, ALDEN D, NICOLA P B. A comprehensive survey on microgrippers design: mechanical structure [J]. Journal of Mechanical Design, 2017, 139(060801): 1-26.
[4] YANG Y L, WEI Y D, LOU J Q, et al. Design and control of a multi-DOF micromanipulator dedicated to multiscale micromanipulation [J]. Smart Materials and Structures, 2017, 26(11): 1-34.
[5] 余跃庆, 张志丹. 近似柔顺常力机构的研制及其实验研究[J]. 北京工业大学学报, 2018, 38(3): 321-324.
YU Y Q, ZHANG Z D. Experimental study on approximate compliant constant-force mechanisms [J]. Journal of Beijing University of Technology, 2018, 38(3): 321-324.
[6] XIE Y, SUN D, TSE H Y G, et al. Force and manipulation strategy in robot-assisted microinjection on zebrafish embryos [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6): 1002-1010.
[7] ZHANG W, SOBOLEVSKL A, LI B, et al. An automated force-controlled robotic micromanipulation system for mechanotransduction studies of drosophila larvae [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 789-797.
[8] 张凯, 韩迎鸽, 李保坤, 等. 基于附加弹簧双滑块四杆机构的柔顺恒力机构设计[J]. 机械传动, 2020, 44(4): 85-89.
ZHANG K, HAN Y G, LI B K, et al. Design of compliant constant-force mechanism based on additional spring double-slider four-bar mechanism [J]. Journal of Mechanical Transmission, 2020, 44(4): 85-89.
[9] CHEN Y H, LAN C C. An adjustable constant-force mechanism adaptive end-effector operations [J]. Journal of Mechanical Design, 2012, 134(031005): 1-9.
[10] 杨晓钧, 舒淦, 李兵. 含柔顺关节的空间RSSP常力机构建模与分析[J]. 浙江大学学报(工学版), 2018, 52(2): 261-261.
YANG X J, SHU G, LI B. Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 261-261.
[11] 陈晓东, 邓子龙, 高兴军, 等. 基于细胞变换的柔性恒力机械手设计[J]. 机械传动, 2019, 43(12): 89-92.
CHEN X D, DENG Z L, GAO X J, et al. Design of flexible constant force manipulator based on metamorphic mechanism transform [J]. Journal of Mechanical Transmission, 2019, 43(12): 89-92.
[12] 李玄, 周双武, 路松, 等. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
LI X, ZHOU S W, LU S, et al. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism [J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540.
[13] 伍威, 赵纪宇, 丁冰晓, 等. 新型空间大行程微夹持器的设计与分析[J/OL]. 机械科学与技术,2020:1-8(2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181.
WU W, ZHAO J Y, DING B X, et al. Design and analysis of a novel type of spatial micro-gripper with large displacement[[J/OL]. Mechanical Science and Technology for Aerospace Engineering, (2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181.
[14] 张赢斌. 拓扑优化法设计恒力柔顺机构[D]. 西安: 西安电子科技大学, 2012.23-30.
[15] 时培成, 李云龙, 肖平, 等. 负刚度结构的座椅悬架优化及隔振分析[J/OL]. 机械科学与技术, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054.
SHI P C, LI Y L, XIAO P, et al. Optimization and vibration isolation analysis of seat suspension with negative stiffness structure[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054.
[16] WANG J Y, LAN C C. A constant-force compliant gripper for handling objects of various sizes [J]. Journal of Mechanical Design, 2014, 136(071008): 1-10.
[17] HAO G B, JOHN M, KWVIN C. Simplified modeling and development of a bi-directionally adjustable constant-force compliant gripper [J]. Journal of Mechanical Engineering Science, 2017, 231(11): 2110-2123.
[18] LIU Y L, ZHANG Y L, XU Q S. Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams [J]. IEEE/ASME Transaction on Mechatronics, 2017, 22(1): 476-486.
[19] WANG P Y, XU Q S. Design and modeling of constant-force mechanisms: a survey [J]. Mechanism and Machine Theory, 2018, 119: 1-21.
[20] ZHOU Z F, GAO Y Z, SUN L N, et al. A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: design, modeling and case studies [J]. Mechanical Sciences, 2020, 11(1): 75-89.
[21] WANG F J, ZHAO X L, HUO Z C, et al. A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism [J]. Mechanism and Machine Theory, 2020, 155(104066): 1-14.
[22] LINK M X, CAO J Y, JIANG Z, et al. Modular kinematics and statics modeling for precision positioning stage [J]. Mechanism and Machine Theory, 2017, 107: 274-282.
[23] HOLST G L, TEICHERTT G H, JENSEN B D. Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms [J]. Journal of Mechanical Design, 2011, 133(051002): 1-10.
[1] Zhang Xiao-wei, Lin Xiu-jun, Zheng Ling-li, Pan Ji-sheng, Tang Wen-yan, Cheng Si-yuan. Removal of Redundant Constraints of Trajectory Coincidence by Substituting Lower Pair Mechanism by Higher Pair Mechanism in the Calculation of Degree of Freedom in Planar Mechanisms [J]. Journal of Guangdong University of Technology, 2020, 37(02): 60-66.
[2] Zhang Guo-ying, Jiang Hao, Zhang Tao, Xiao Cai, Liu Guan-feng, Xiao Xiao-lan, Luo Shao-ming. Dynamic Modeling and Analysis of 3-DOF Spheroid Parallel Mechanism [J]. Journal of Guangdong University of Technology, 2018, 35(06): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!