Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (05): 33-39.doi: 10.12052/gdutxb.210036

Previous Articles     Next Articles

Superpixel and Visual Saliency Synergetic Image Quality Assessment

Deng Jie-hang, Yuan Zhong-ming, Lin Hao-run, Gu Guo-sheng   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-03-04 Online:2021-09-10 Published:2021-07-13

Abstract: In order to achieve higher consistency between objective and subjective evaluation of image quality, a full-reference image quality evaluation method based on a synergetic strategy between superpixel and visual saliency is proposed. This method obtains the image quality score by pooling four similarities of the image features. The four similarities are: the superpixel-based local luminance similarity, the superpixel-based local chrominance similarity, the visual saliency similarity, and the Scharr gradient similarity. In particular, a parameter correction model is proposed to adaptively adjust the parameters of each similarity, to address the problem of determining the parameters of each similarity empirically. The visual saliency is introduced to design a weighting function to fuse the four similarities to obtain the global quality score. A large number of comparative experiments show that the proposed method outperforms the baseline full-reference image quality assessment methods, and has a higher correlation with the subjective evaluation.

Key words: full reference image quality assessment, superpixel, visual saliency, gradient, adaptive parameter model

CLC Number: 

  • TP391.41
[1] WANG Z, BOVIK A C. Modern image quality assessment[M]. New York: Morgan and Claypool Publishing Company, 2006.
[2] 褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13-22.
CHU J, CHEN Q, YANG X C. Review on full reference image quality assessment algorithms [J]. Application Research of Computers, 2014, 31(1): 13-22.
[3] WANG Z, BOVIK A C. Mean squared error: love it or leave it? [J]. IEEE Signal Processing Magazine, 2009, 26(1): 98-17.
[4] 高方远, 何立火. 基于深度网络和视觉特性的无参考图像质量评价方法[J]. 南京师大学报(自然科学版), 2019, 42(3): 20-26.
GAO F Y, HE L H. No-reference image quality assessment based on deep network and visual characteristics [J]. Journal of Nanjing Normal University(Natural Science Edition), 2019, 42(3): 20-26.
[5] 马华林, 张立燕. 基于人眼感知的无参考色调映射图像质量评价[J]. 计算机应用与软件, 2020, 37(7): 158-164.
MA H L, ZHANG L Y. No-reference Tone-mapper image quality assessment based on human eye perception [J]. Computer Applications and Software, 2020, 37(7): 158-164.
[6] 崔力. 基于多特征相似性融合的半参考图像质量评价[J]. 陕西科技大学学报, 2019, 37(6): 160-164.
CUI L. Reduced-reference image quality assessment base on multi-feature similarity fusion [J]. Journal of Shanxi University of Science & Technology, 2019, 37(6): 160-164.
[7] 吴世海, 鲍义东, 陈果, 等. 基于随机Gabor特征的半参考农作物图像质量评价方法[J]. 计算机与现代化, 2020(5): 70-74.
WU S H, BAO Y D, CHEN G, et al. Reduced-reference crop image quality assessment based on random Gabor feature [J]. Computer and Modernization, 2020(5): 70-74.
[8] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[9] WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment[C]//The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA: IEEE Signal Processing Society, 2003: 1398-1402.
[10] WANG Z, LI Q. Information content weighting for perceptual image quality assessment [J]. IEEE Transaction on Image Processing, 2011, 20(5): 1185-1198.
[11] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment [J]. IEEE Transaction on Image Processing, 2011, 20(8): 2378-2386.
[12] LARSON E C, CHANDLER D M. Most apparent distortion: full-reference image quality assessment and the role of strategy [J]. Journal of Electronic Imaging, 2010, 19(1): 011006.
[13] XUE W F, ZHANG L, MOU X Q, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index [J]. IEEE Transaction on Image Processing, 2014, 23(2): 684-695.
[14] SUN W, LIAO Q M, XUE J H, et al. SPSIM: a superpixel-based similarity index for full-reference image Quality Assessment [J]. IEEE Transaction on Image Processing, 2018, 27(9): 4232-4244.
[15] ZHANG L, SHEN Y, LI H Y. VSI: a visual saliency-induced index for perceptual image quality assessment [J]. IEEE Transaction on Image Processing, 2014, 23(10): 4270-4281.
[16] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23.
GAO J Y, LIU W Y, YAN Z G. Object tracking combined with attention and feature fusion [J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23.
[17] HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]//Proceedings of the 2006 Conference. Advances in Neural Information Processing Systems 19. Vancouver: MIT Press, 2007: 545-552.
[18] ACHANTA R, SHAJI A, SMITH K et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2281.
[19] ZHANG X D, FENG X C, WANG W W et al. Edge strength similarity for image quality assessment [J]. IEEE Signal Processing Letters, 2013, 20(4): 319-322.
[20] 高敏娟, 党宏社, 魏立力, 等. 结合全局与局部变化的图像质量评价[J]. 自动化学报, 2020, 46(12): 1-10;.
GAO M J, DANG H S, WEI L L et al. Combining global and local variation for image quality assessment [J]. Acta Automatica Sinica, 2020, 46(12): 1-10;.
[21] 高敏娟, 党宏社, 魏立力, 等. 视觉显著性引导的局部图像质量度量[J]. 中国科学: 技术科学, 2019, 49(11): 1350-1360.
GAO M J, DANG H S, WEI L L, et al. Visual saliency induced local image quality metrics [J]. Scientia Sinica (Technological), 2019, 49(11): 1350-1360.
[22] 史晨阳, 林燕丹. 基于图像色貌和梯度特征的图像质量客观评价[J]. 物理学报, 2020, 69(22): 401-41.
SHI C Y, LIN Y D. Objective image quality assessment based on image color appearance and gradient features [J]. Acta Physica Sinica, 2020, 69(22): 401-41.
[1] Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21.
[2] Zhang Shu, Mo Zan, Liu Jian-hua, Yang Pei-chen, Liu Hong-wei. Multi-granularity Microblog User Interest Portrait Construction Based on NWD Integrated Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(04): 42-50.
[3] Zhu Jian, Zhang Hao-chen, Chen Bing-feng, Cai Rui-chu. Fast Simulation of Realistic Smoke Based on Vortex Particles [J]. Journal of Guangdong University of Technology, 2019, 36(03): 25-31.
[4] WU Guan-Jian, SONG Li-Feng. Fast Intra Mode and Depth Decision Algorithm for HEVC [J]. Journal of Guangdong University of Technology, 2015, 32(04): 132-137.
[5] YAO Lei. A Novel Parameter Optimization Algorithm for Mamdani Fuzzy Neural Networks Based on PSO [J]. Journal of Guangdong University of Technology, 2014, 31(1): 36-39.
[6] WU Jian-Hong, LI Wei-Tong, LIAO Jie. An Improved Image Fusion Algorithm Based on Wavelet-Based Contourlet Transform [J]. Journal of Guangdong University of Technology, 2011, 28(1): 12-15.
[7] LIU Li-cheng. An Improved Vehicle Image Edge Detection Based on Morphology Gradient [J]. Journal of Guangdong University of Technology, 2007, 24(2): 84-86.
[8] LIU Li-cheng. Vehicle Image Edge Detection Using Image Cluster Analysis [J]. Journal of Guangdong University of Technology, 2006, 23(2): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!