Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (06): 68-72.doi: 10.12052/gdutxb.210049
• Comprehensive Studies • Previous Articles Next Articles
Zhang Yao1, Zhang Zhi-hao1,2, Zhang Guo-hao1,2
CLC Number:
[1] TAKAGI K, MATSUSHITA K, KASHIWABARA Y, et al. Developing GaN HEMTs for Ka-band with 20W[C]//2010 IEEE Compound Semiconductor Integrated Circuit Symposium(CSICS) . Monterey, CA: IEEE, 2010: 1-4. [2] 陈勇波, 周建军, 徐跃杭, 等. GaN高电子迁移率晶体管高频噪声特性的研究[J]. 微波学报, 2011, 27(6): 84-88. CHEN Y B, ZHOU J J, XU Y H, et al. Research on high frequency noise characters of GaN HEMTs [J]. Journal of Microwaves, 2011, 27(6): 84-88. [3] 贾晨阳, 彭龙新, 刘昊, 等. 毫米波GaAs单片限幅低噪声放大器[J]. 固体电子学研究与进展, 2019, 39(3): 169-173. JIA C Y, PENG L X, LIU H, et al. Millimeter wave GaAs MMIC limiter low noise amplifier [J]. Research & Progress of SSE, 2019, 39(3): 169-173. [4] KAHIL S A K, LAURENT S, QUÉRÉ R, et al. Linearity characterization of GaN HEMT technologies through innovative on-wafer multi-tone load-pull measurements[C]//2016 11th European Microwave Integrated Circuits Conference(EuMIC) . London, UK: IEEE, 2016: 37-40. [5] ZHANG S, XU J, ZHENG P, et al. An 18-31GHz GaN-based LNA with 0.8dB minimum NF and high robustness [J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 896-899. [6] PACE L, CICCOGNANI W, COLANGELI S, et al. A Ka-band low-noise amplifier for space applications in a 100 nm GaN on Si technology[C]//2019 15th Conference on Ph. D Research in Microelectronics and Electronics(PRIME) . Lausanne, Switzerland: IEEE, 2019: 161-164. [7] KIM S, KIM B, LEE Y, et al. A 28 GHz direct conversion receiver in 65 nm CMOS for 5G mmWave radio[C]//2019 International SoC Design Conference (ISOCC) . Jeju, Korea (South) : IEEE, 2019: 29-30. [8] POURNAMY S, KUMAR N. Design of 60 GHz broadband LNA for 5G cellular using 65 nm CMOS technology[C]//2017 7th International Conference on Communication Systems and Network Technologies (CSNT) . Nagpur, India: 2017: 320-324. [9] 吴少兵, 李建平, 李忠辉, 等. Ka波段GaN单片低噪声放大器研制[J]. 固体电子学研究与进展, 2018, 38(2): 81-84. WU S B, LI J P, LI Z H, et al. Fabrication of Ka-band GaN MMIC LNA [J]. Research & Progress of SSE, 2018, 38(2): 81-84. [10] 张浩, 王科平, 冷思明. 23~47 GHz宽带BiCMOS低噪声放大器设计[J]. 微波学报, 2019, 35(6): 45-48. ZHANG H, WANG K P, LENG S M. Design of a 23~47 GHz Wideband BiCMOS low noise amplifier [J]. Journal of Microwaves, 2019, 35(6): 45-48. [11] 王美兰, 陈炎桂, 胡楠. 一种用于5G终端的毫米波收发器前端芯片的研制[J]. 微波学报, 2020, 36(4): 86-89. WANG M L, CHEN Y G, HU N. Research and development of a millimeter wave transceiver front end chip for 5G terminal application [J]. Journal of Microwaves, 2020, 36(4): 86-89. [12] 张忠皓, 周瑶, 李福昌, 等. 5G毫米波产业发展现状分析[J]. 邮电设计技术, 2021(2): 37-41. ZHANG Z H, ZHOU Y, LI F C, et al. Analysis on the development status of 5G millimeter wave industry [J]. Designing Techniques of Posts and Telecommunications, 2021(2): 37-41. [13] FERREYRA R A, SUZUKI A, KAZUMOTO T, et al. n++ GaN regrowth technique using pico-second laser ablation to form non-alloy ohmic contacts [J]. IEEE Electron Device Letters, 2017, 38(8): 1079-1081. [14] DARABI H. 射频集成电路及系统设计[M]. 北京: 机械工业出版社, 2019: 93-97. [15] NIKANDISH G, MEDI A. Design and analysis of broadband darlington amplifiers with bandwidth enhancement in GaAs pHEMT technology [J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(8): 1705-1715. |
[1] | LIN Zhi-Kai, LIN Fu-Min, LI Geng-Lu, LI Xiao-Peng-. Design of a New Type of Double Radio Frequency Low Noise Amplifier Circuits with the Function of Inner and Outer Antenna Switching [J]. Journal of Guangdong University of Technology, 2014, 31(1): 79-85. |
|