Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (06): 84-90.doi: 10.12052/gdutxb.210077

Previous Articles     Next Articles

Realization of Intrinsic Safety in Production Process Based on Artificial Intelligence

Cui Tie-jun1, Li Sha-sha2   

  1. 1. College of Safety Science and Engineering, Liaoning Technical University, Huludao 125000, China;
    2. School of Business Administration, Liaoning Technical University, Huludao 125000, China
  • Received:2021-05-20 Online:2021-11-10 Published:2021-11-09

Abstract: To study the way to realize the intrinsic safety of production system, the method of realizing the intrinsic safety of production system by establishing artificial intelligence management system is proposed. Firstly, the concept and problems of intrinsic safety are discussed, including the functions and characteristics of human, machine, environment and management subsystems in the production system, and their obstacles to the realization of intrinsic safety also studied; secondly, the feasibility of realizing intrinsic safety by artificial intelligence is discussed, and the structure of artificial intelligence production system established. Compared with the original structure, the operator disappears, the role of manager changes and increases feedback mechanism and system complexity is decreased. Finally, the way to realize intrinsic safety is discussed, that is to build an artificial intelligence management system, which has the characteristics of double cycle and self-learning. Although the theory of fault pattern recognition and fault knowledge base is not mature, it is feasible to realize the intrinsic safety of production process by establishing artificial intelligence management system.

Key words: artificial intelligence, production process, intrinsic safety, artificial intelligence management system, double circulation, self-learning

CLC Number: 

  • TP18
[1] 董景辰. 本质安全系统设计浅谈[J]. 工业仪表与自动化装置, 1974(2): 53-61.
DONG J C. Discussion on intrinsic safety system design [J]. Industrial Instrumentation and Automation, 1974(2): 53-61.
[2] 潘洁. 本质安全型矿井分区特征构建与应用[J]. 煤矿安全, 2014, 45(11): 246-248.
PAN J. Establishing and application of subarea characteristics of intrinsic safety coal mine construction [J]. Safety in Coal Mines, 2014, 45(11): 246-248.
[3] 孙大雁, 郭成功, 任智刚, 等. 电网企业本质安全管理体系构建研究[J]. 中国安全生产科学技术, 2019, 15(6): 174-178.
SUN D Y, GUO C G, REN Z G, et al. Research on construction of intrinsic safety management system for power grid enterprise [J]. Journal of Safety Science and Technology, 2019, 15(6): 174-178.
[4] 蔡逸伦, 阳富强, 朱伟方, 等. 化工工艺本质安全评价的云模型及应用[J]. 中国安全科学学报, 2018, 28(6): 116-121.
CAI Y L, YANG F Q, ZHU W F, et al. Cloud model for assessing inherent safety assessment of chemical process and its application [J]. China Safety Science Journal, 2018, 28(6): 116-121.
[5] 张靖岩, 朱娟花, 韦雅云, 等. 基于本质安全理念的建筑综合防灾技术体系构建[J]. 中国安全生产科学技术, 2018, 14(6): 171-176.
ZHANG J Y, ZHU J H, WEI Y Y, et al. Construction of technology system for comprehensive disaster prevention of buildings based on intrinsic safety concept [J]. Journal of Safety Science and Technology, 2018, 14(6): 171-176.
[6] 刘维, 吕品, 刘晓洁, 王璇, 等. 基于熵权物元可拓模型的化工工艺本质安全评价[J]. 中国安全生产科学技术, 2013, 9(3): 150-156.
LIU W, LYU P, LIU X J, et al. Inherent safety evaluation of chemical process based on entropy-weight and matter-element model [J]. Journal of Safety Science and Technology, 2013, 9(3): 150-156.
[7] 魏丹, 蒋军成, 倪磊, 等. 基于未确知测度理论的化工工艺本质安全度研究[J]. 中国安全科学学报, 2018, 28(5): 117-122.
WEI D, JIANG J C, NI L, et al. Uncertainty measurement theory based evaluation of inherent safety of chemical process [J]. China Safety Science Journal, 2018, 28(5): 117-122.
[8] 段永峰, 罗海霞, 刘存福. 基于AHP的煤矿本质安全管理体系评价模型及其应用[J]. 煤炭技术, 2013, 32(8): 122-124.
DUAN Y F, LUO H X, LIU C F. Coal mine intrinsic safety assessment model and application based on AHP [J]. Coal Technology, 2013, 32(8): 122-124.
[9] 孟清华, 李斌, 李海涛. 基于PSR模型的煤矿本质安全评价新方法[J]. 煤炭技术, 2014, 33(09): 42-44.
MENG Q H, LI B, LI H T. New method of intrinsic safety evaluation in coal mine based on PSR model [J]. Coal Technology, 2014, 33(09): 42-44.
[10] 叶昊天, 董以宁, 许爽, 等. 考虑本质安全的换热网络多目标优化[J]. 化工学报, 2019, 70(7): 2584-2593.
YE H T, DONG Y N, XU S, et al. Multi-objective optimization of heat exchanger networks considering inherent safety [J]. CIESC Journal, 2019, 70(7): 2584-2593.
[11] 王庆锋, 刘家赫, 柳建军, 等. 炼化企业设备的本质安全可靠与监管智能化对策研究[J]. 中国工程科学, 2019, 21(6): 129-136.
WANG Q F, LIU J H, LIU J J, et al. Intrinsic safety & reliability and supervision intelligentization of equipment in refinery enterprises [J]. Strategic Study of CAE, 2019, 21(6): 129-136.
[12] 袁长峰, 陶彬, 王万雷, 等. 油储系统火灾事故应急过程本质安全的分类风险源识别方法研究[J]. 工业安全与环保, 2017, 43(11): 49-53.
YUAN C F, TAO B, WANG W L, et al. The classification risk source identification method on essential safety of the emergency process for oil reservoir system fire accident [J]. Industrial Safety and Environmental Protection, 2017, 43(11): 49-53.
[13] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32-37.
CUI T J, MA Y D. Research on multi-dimensional space fault tree construction and application [J]. China Safety Science Journal, 2013, 23(4): 32-37.
[14] 崔铁军, 马云东. 空间故障树的径集域与割集域的定义与认识[J]. 中国安全科学学报, 2014, 24(4): 27-32.
CUI T J, MA Y D. Definition and understand on size set domain and cut set domain based on multi-dimensional space fault tree [J]. China Safety Science Journal, 2014, 24(4): 27-32.
[15] 崔铁军, 马云东. 基于多维空间事故树的维持系统可靠性方法研究[J]. 系统科学与数学, 2014, 34(6): 682-692.
CUI T J, MA Y D. Research on the maintenance method of system reliability based on multi-dimensional space fault tree [J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(6): 682-692.
[16] 钟义信, 张瑞. 信息生态学与语义信息论[J]. 图书情报知识, 2017(6): 4-11.
ZHONG Y X, ZHANG R. Information ecology and semantic information theory [J]. Documentation, Information & Knowledge, 2017(6): 4-11.
[17] 钟义信. 从“机械还原方法论”到“信息生态方法论”——人工智能理论源头创新的成功路[J]. 哲学分析, 2017, 8(5): 133-144.
ZHONG Y X. From Mechanical reductionism to methodology of information ecology—successful approach to innovation for AI theory [J]. Philosophical Analysis, 2017, 8(5): 133-144.
[18] 钟义信. 从信息科学视角看《信息哲学》[J]. 哲学分析, 2015, 6(1): 17-31.
ZHONG Y X. Information science and its view on information philosophy [J]. Philosophical Analysis, 2015, 6(1): 17-31.
[19] 钟义信. 高等智能·机制主义·信息转换[J]. 北京邮电大学学报, 2010, 33(1): 1-6.
ZHONG Y X. Advanced intelligence-mechanjsm approach-infomation conversion [J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 1-6.
[20] 何华灿. 重新找回人工智能的可解释性[J]. 智能系统学报, 2019, 14(3): 393-412.
HE H C. Refinding the interpretability of artificial intelligence [J]. CAAI Transactions on Intelligent Systems, 2019, 14(3): 393-412.
[21] 何华灿. 泛逻辑学理论——机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018, 13(1): 19-36.
HE H C. Universal logic theory—logical foundation of mechanism-based artificial intelligence theory [J]. CAAI Transactions on Intelligent Systems, 2018, 13(1): 19-36.
[22] 汪培庄, 周红军, 何华灿, 等. 因素表示的信息空间与广义概率逻辑[J/OL]. 智能系统学报, 2019(5): 1-14[2021-05-20]. http://kns.cnki.net/kcms/detail/ 23.1538.TP.20190527.1345.006.html.
WANG P Z, ZHOU H J, HE H C, et al. Factorial information space and generalized probability logic [J/OL]. CAAI Transactions on Intelligent Systems, 2019(5): 1-14[2019-05-20]. http://kns.cnki.net/kcms/detail/ 23.1538.TP.20190527.1345.006.html.
[23] 汪培庄. 因素空间与概念描述[J]. 软件学报, 1992(1): 30-40.
WANG P Z. Factor space and description of concepts [J]. Journal of Software, 1992(1): 30-40.
[1] Hu Bin, Zhou Ying-hui, Tao Xiao-mei. Emotional Intelligence and Computational Psychophysiology [J]. Journal of Guangdong University of Technology, 2021, 38(04): 1-8.
[2] Wang Pei-zhuang, Zeng Fan-hui, Sun Hui, Li Xing-sen, Guo Jian-wei, Meng Xiang-fu, He Jing. Extension of Knowledge Graph and its Intelligent Extension Library [J]. Journal of Guangdong University of Technology, 2021, 38(04): 9-16.
[3] Rao Dong-ning, Yang Jin-peng, Liu Yue-chang. A Survey of Temporal Planning [J]. Journal of Guangdong University of Technology, 2021, 38(03): 9-16.
[4] Cui Tie-jun, Li Sha-sha. Research on the Intelligent Science Theory of Oriental Thinking Based on Factor Driven [J]. Journal of Guangdong University of Technology, 2021, 38(01): 1-4.
[5] Qiu Ming-jin, Chen Jing-hua, Tang Jun-jie. An Overview of Optimal Power Flow with Wind Farm and Relevant Key Technology [J]. Journal of Guangdong University of Technology, 2018, 35(02): 63-68,94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!