Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (03): 77-82.doi: 10.12052/gdutxb.210084

Previous Articles     Next Articles

Surface Deformation Monitoring Based on Dual-polarization Time Series InSAR Technology

Chen Jia-wei1,2, Ng Alex Hay-Man1,2, Wang Hua1, Chen Bing-jie1   

  1. 1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-05-31 Online:2022-05-10 Published:2022-05-19

Abstract: To solve the problem of poor monitoring results generated by time-series Interferometric Synthetic Aperture Radar (TS-InSAR) technology in low coherence areas, the traditional TS-InSAR method is improved from the perspective of polarization data. Taking Zhuhai Gaolan Port Economic Zone as the research subject, the article examines 47 dual-polarized Sentinel-1A satellite images with vertical-transmit-and-vertical-receive mode (VV) and vertical-transmit-and-horizontal-receive mode (VH) to experiment and obtain results and do the validation analysis. Results show that the monitoring quality of the time series InSAR technology can be effectively improved by applying dual-polarization data; and that the subsidence in this area is caused by geological conditions and reclamation projects. This research can provide a theoretical basis for the monitoring and prevention of regional subsidence.

Key words: time-series InSAR, Sentinel-1A, dual-polarization, subsidence

CLC Number: 

  • TU196
[1] 刘胜男, 陶钧, 卢银宏. 地面沉降监测多源数据融合分析[J]. 测绘通报, 2020(12): 46-49.
LIU S N, TAO J, LU Y H. Multi-source data fusion analysis of land subsidence monitoring [J]. Bulletin of Surveying and Mapping, 2020(12): 46-49.
[2] 窦超, 赵利江, 张生鹏, 等. 利用InSAR数据的格尔木市地表沉降监测[J]. 测绘通报, 2020(10): 123-126.
DOU C, ZHAO L J, ZHANG S P, et al. Study on surface settlement of Golmud city based on time series InSAR [J]. Bulletin of Surveying and Mapping, 2020(10): 123-126.
[3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.
ZHU J J, LI Z W, HU J. Research progress and methods of InSAR for deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.
[4] NG A H. Advanced satellite radar interferometry for ground surface displacement detection[D]. Sydney: The University of New South Wales, 2010.
[5] 施显健, 任超, 周吕, 等. InSAR填海区地铁沿线地表沉降反演分析[J]. 测绘科学, 2021, 46(2): 146-151.
SHI X J, REN C, ZHOU L, et al. Land subsidence inversion analysis along the subway in the reclamation area based on InSAR [J]. Science of Surveying and Mapping, 2021, 46(2): 146-151.
[6] 刘琦, 岳国森, 丁孝兵, 等. 佛山地铁沿线时序InSAR形变时空特征分析[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1099-1106.
LIU Q, YUE G S, DING X B, et al. Temporal and spatial characteristics analysis of deformation along Foshan subway using time series InSAR [J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106.
[7] 张文婷, 季灵运, 朱良玉, 等. 基于Sentinel-1数据的银川盆地现今地壳形变研究[J]. 大地测量与地球动力学, 2020, 40(9): 902-906.
ZHANG W T, JI L Y, ZHU L Y, et al. Current crustal deformation of Yinchuan basin based on Sentinel-1 data [J]. Journal of Geodesy and Geodynamics, 2020, 40(9): 902-906.
[8] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[9] KAMPES B M. Radar Interferometry: Persistent Scatterer Technique[M]. The Netherland: Springer-Verlag, 2006: 15-28.
[10] HOOPER A J. Persistent scatterer radar interferometry for crustal deformation studies and modelling of volcanic deformation[D]. Palo Alto: Stanford University, 2006.
[11] NG A H, GE L L, LI X J, et al. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry [J]. Journal of Geodesy, 2012, 86(6): 375-392.
[12] CLOUDE S R, PAPATHANASSIOUS K P. Polarimetric SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551-1565.
[13] PIPIA L, FABREGAS X, AGUASCA A, et al. Polarimetric differential SAR interferometry: first results with ground-based measurements [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 167-171.
[14] NAVARRO-SANCHEZ V D, LOPEZ-SANCHEZ J M, VINCENTE-GUIJALBA F. A contribution of polarimetry to satellite differential SAR interferometry: increasing the number of pixel candidates [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 276-280.
[15] IGLESIAS R, MALLORQUI J J, LÓPEZ-DEKKER P. DInSAR pixel selection based on sublook spectral correlation along time [J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(7): 3788-3799.
[16] ZHAO F, MALLORQUI J J. Coherency matrix decomposition-based polarimetric persistent scatterer interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7819-7831.
[17] 张宇明. 浅析珠海西区欠固结软土地基的沉降灾害及防治[J]. 广东土木与建筑, 2010, 17(6): 11-13.
ZHANG Y M. Analysis on settlement disaster and prevention of under consolidation soft soil foundation in western district of Zhuhai [J]. Guangdong Architecture Civil Engineering, 2010, 17(6): 11-13.
[18] 江金进, 刘佳, 吴舒天, 等. 珠海市软土分布特征及软土沉降风险评价[J]. 地质灾害与环境保护, 2020, 31(2): 68-74.
JIANG J J, LIU J, WU S T, et al. Distribution characteristics of soft soil and risk assessment of soft soil subsidence in Zhuhai [J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(2): 68-74.
[19] MULLISSA A G, TOLPEKIN V, STEIN A, et al. Polarimetric differential SAR interferometry in an arid natural environment [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 59: 9-18.
[20] ESMAEILI M, MOTAGH M. Improved persistent scatterer analysis using amplitude dispersion index optimization of dual polarimetry data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 108-114.
[21] AZADNEJAD S, MAGHSOUDI Y, PERISSIN D. Evaluation of polarimetric capabilities of dual polarized Sentinel-1 and TerraSAR-X data to improve the PSInSAR algorithm using amplitude dispersion index optimization [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 84: 101950.
[22] 赖波, 江金进, 刘佳. 基于PS-InSAR技术的珠海市地面沉降监测分析[J]. 资源环境与工程, 2021, 35(2): 241-244.
LAI B, JIANG J J, LIU J. Analysis of ground subsidence monitoring in Zhuhai city base on PS-InSAR technology [J]. Resources Environment and Engineering, 2021, 35(2): 241-244.
[23] 李治斌, 党星海, 蔡明祥, 等. 基于PSInSAR技术的珠海市地表沉降监测与归因分析[J]. 自然灾害学报, 2021, 30(1): 38-46.
LI Z B, DANG X H, CAI M X, et al. Subsidence monitoring and analysis of Zhuhai based on PSInSAR technology [J]. Journal of Natural Disasters, 2021, 30(1): 38-46.
[1] Dai Yi-wei, Alex Hay-Man Ng, Min Xin-ying, Wang Hua, Zhu Huan-lian, Peng Lin-cai. Ground Deformation Monitoring of Major Cities in the Pearl River Delta Region Using Time Series InSAR Technique [J]. Journal of Guangdong University of Technology, 2019, 36(04): 92-98.
[2] WU Hai-Xiang, WANG Hua, HUANG Xiu-Ru, Carolina Pagli, YANG Ze-Xin. Improving the Coherence of Interferograms of Mining Subsidence by Oversampling [J]. Journal of Guangdong University of Technology, 2015, 32(3): 123-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!