Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (06): 70-76.doi: 10.12052/gdutxb.210136
Previous Articles Next Articles
Guo Xin-de1, Chris Hong-qiang Ding2,3
CLC Number:
[1] WU Z S, FU W P. A review of path planning method for mobile robot [J]. Advanced Materials Research, 2014, 1030-1032: 1588-1591. [2] REN Z G, LAI J L, WU Z Z, et al. Deep neural networks-based real-time optimal navigation for an automatic guided vehicle with static and dynamic obstacles [J]. Neurocomputing, 2021, 443: 329-344. [3] PATLE B K, GANESH B L, PANDEY A, et al. A review: on path planning strategies for navigation of mobile robot [J]. Defence Technology, 2019, 15(4): 258-276. [4] 高明, 唐洪, 张鹏. 机器人集群路径规划技术研究现状[J]. 国防科技大学学报, 2021, 43(1): 127-138. GAO M, TANG H, ZHANG P. Survey of path planning technologies for robots swarm [J]. Journal of National University of Defense Technology, 2021, 43(1): 127-138. [5] SONG R, LIU Y, BUCKNALL R. Smoothed A* algorithm for practical unmanned surface vehicle path planning [J]. Applied Ocean Research, 2019, 83: 9-20. [6] STENTZ A. The focussed D* algorithm for real-time replanning[C]//Proceedings of International Joint Conference on Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1995: 1652-1659. [7] 梁嘉俊, 曾碧, 何元烈. 基于改进势场栅格法的清洁机器人路径规划算法研究[J]. 广东工业大学学报, 2016, 33(4): 30-36. LIANG J J, ZENG B, HE Y L. Research on path planning algorithm for cleaning robot based on improved potential field grid method [J]. Journal of Guangdong University of Technology, 2016, 33(4): 30-36. [8] 胡杰, 张华, 傅海涛, 等. 改进人工势场法在移动机器人路径规划中的应用[J]. 机床与液压, 2021, 49(3): 6-10. HU J, ZHANG H, FU H T, et al. Application of improved artificial potential field method in path planning of mobile robots [J]. Machine Tool & Hydraulics, 2021, 49(3): 6-10. [9] WANG H J, FU Y, ZHAO Z Q, et al. An improved ant colony algorithm of robot path planning for obstacle avoidance[J/OL]. Journal of Robotics, 2019: 1-8[2021-05-18]. https://doi.org/10.1155/2019/6097591. [10] FRANOIS-LAVET V, HENDERSON P, ISLAM R, et al. An Introduction to Deep Reinforcement Learning [J]. Foundations and Trends in Machine Learning, 2018, 11(3/4): 219-354. [11] 刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020, 2(4): 314-326. LIU C Y, MU C X, SUN C Y. An overview on algorithms and applications of deep reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 314-326. [12] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge [J]. Nature:International Weekly Journal of Science, 2017, 550: 354-359. [13] LIANG X Y, DU X S, WANG G L, et al. A deep reinforcement learning network for traffic light cycle control [J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1243-1253. [14] 周思雨, 白成超. 基于深度强化学习的行星车路径规划方法研究[J]. 无人系统技术, 2019, 2(4): 38-45. ZHOU S Y, BAI C C. Research on planetary rover path planning method based on deep reinforcement learning [J]. Unmanned Systems Technology, 2019, 2(4): 38-45. [15] XIE R L, MENG Z J, WANG L F, et al. Unmanned aerial vehicle path planning algorithm based on deep reinforcement learning in large-scale and dynamic environments [J]. IEEE Access, 2021, 9(1): 24884-24900. [16] 吴运雄, 曾碧. 基于深度强化学习的移动机器人轨迹跟踪和动态避障[J]. 广东工业大学学报, 2019, 36(1): 42-50. WU Y X, ZENG B. Trajectory tracking and dynamic obstacle avoidance of mobile robot based on deep reinforcement learning [J]. Journal of Guangdong University of Technology, 2019, 36(1): 42-50. [17] NING W A, XP B, SFS C. Finite-time fault-tolerant trajectory tracking control of an autonomous surface vehicle [J]. Journal of the Franklin Institute, 2020, 357(16): 11114-11135. [18] 秦智慧, 李宁, 刘晓彤, 等. 无模型强化学习研究综述[J]. 计算机科学, 2021, 48(3): 180-187. QIN Z H, LI N, LIU X T, et al. Overview of research on model-free reinforcement learning [J]. Computer Science, 2021, 48(3): 180-187. [19] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [J]. Computer Science, 2013, 56(1): 201-220. [20] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518: 529-533. [21] VAN H V, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning [J]. Computer Science, 2015, 34(2): 2094-2100. [22] WANG Z, FREITAS N D, LANCTOT M. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning(ICML). New York: JMLR org, 2016, 48: 1995-2003. [23] FAN S, SONG G H, YANG B W, et al. Prioritized experience replay in multi-actor-attention-critic for reinforcement learning [J]. Journal of Physics Conference Series, 2020, 1631: 012040. |
[1] | Ye Wei-jie, Gao Jun-li, Jiang Feng, Guo Jing. A Research on a Training Model to Improve the Development Efficiency of Robot Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2020, 37(05): 46-50. |
[2] | Wu Yun-xiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance of Mobile Robot Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36(01): 42-50. |
|