Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (02): 74-81.doi: 10.12052/gdutxb.210174

Previous Articles     Next Articles

Research Progress of Two-dimensional Materials and Conducting Polymer Composites in Flexible Supercapacitors

Wan Tao, Yuan Wen-xiong, Zhao Chen, Min Yong-gang   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-11-08 Online:2023-03-25 Published:2023-04-07

Abstract: The rapid development of wearable electronic devices has promoted the research of flexible supercapacitors. Conducting polymers have shown great application potential in flexible supercapacitors due to their high conductivity, fast and reversible redox reaction, and flexibility similar to traditional polymer materials. Pure conducting polymers electrodes exhibit limited electrochemical performance (short cycling life and low actual capacity), and the formation of composite materials with emerging two-dimensional materials can improve their electrochemical performance. The preparation and assembly strategies of two-dimensional materials (graphene, transition metal chalcogenides, and transition metal carbon/nitride) composites from one to three dimensions is discussed firstly, and then the latest progress in their application in flexible supercapacitors with different structures (fiber structure, sandwich structure and planar interdigital structure) is reviewed. Finally, the challenges and future development trend of conducting polymer matrix composites in flexible supercapacitors are presented.

Key words: two-dimensional materials, conducting polymers, flexible supercapacitors

CLC Number: 

  • TM53
[1] EL-KADY M F, SHAO Y L, KANER R B. Graphene for batteries, supercapacitors and beyond [J]. Nature Reviews Materials, 2016, 1(7): 16033.
[2] HUANG P, LETHIEN C, PINAUD S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors [J]. Science, 2016, 351(6274): 691-695.
[3] JIA R, SHEN G, QU F, et al. Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics [J]. Energy Storage Materials, 2020, 27: 169-186.
[4] 李越珠, 黄兴文, 闵永刚, 等. 锂离子电池高镍三元正极材料LiNi0.8Co0.1Mn0.1O2研究进展[J]. 广东工业大学学报, 2021, 38(5): 68-74.
LI Y Z, HUANG X W, MIN Y G, et al. Research progress of LiNi0.8Co0.1Mn0.1O2 high nickel ternary cathode material for lithium ion batteries [J]. Journal of Guangdong University of Technology, 2021, 38(5): 68-74.
[5] YOO D, KIM M, JEONG S, et al. Chemical synthetic strategy for single-layer transition-metal chalcogenides [J]. Journal of the American Chemical Society, 2014, 136(42): 14670-14673.
[6] WANG G, ZHANG L, ZHANG J, et al. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[7] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions [J]. Energy & Environmental Science, 2015, 8(3): 702-730.
[8] PENG X, WU C Z. Two-dimensional nanomaterials for applications in flexible supercapacitors[M]//WU C Z. Inorganic two-dimensional nanomaterials: Fundamental understanding characterizations and energy applications. Cambridge: Royal Society Chemistry, 2017.
[9] TAN C, CHAO X, WU X, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[10] HAN Y, GE Y, WALLACE G G, et al. Recent progress in 2D materials for flexible supercapacitors [J]. Journal of Energy Chemistry, 2018, 27(1): 57-72.
[11] LIU L, NIU Z, CHEN J, et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations [J]. Chemical Society Reviews, 2016, 45(15): 4340-4363.
[12] ZHANG L, ZHAO X. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2016, 38(9): 2520-2531.
[13] LONG J W, BÉLANGER D, BROUSSE T, et al. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes [J]. MRS Bulletin, 2011, 36(7): 513-522.
[14] QI D P, CHEN X D. Flexible supercapacitors based on two‐dimensional materials[M]. Weiheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2018.
[15] SHOWN I, GANGULY A, CHEN L, et al. Conducting polymer-based flexible supercapacitor [J]. Energy Science & Engineering, 2015, 3(1): 2-26.
[16] ZHAO C, JIA X, YU C, et al. Conducting polymer composites for unconventional solid-state supercapacitors [J]. Journal of Materials Chemistry A, 2020, 8(9): 4677-4699.
[17] CHENG M, MENG Y, WEI Z, et al. Conducting polymer nanostructures and their derivatives for flexible supercapacitors [J]. Israel Journal of Chemistry, 2018, 58(12): 1299-1314.
[18] MALINAUSKAS A. Chemical deposition of conducting polymers [J]. Polymers, 2001, 42(9): 3957-3972.
[19] ZHANG H. Ultrathin two-dimensional nanomaterials [J]. ACS Nano, 2015, 9(10): 9451-9469.
[20] KHAN A, GHOSH S, PRADHAN B, et al. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications [J]. Bulletin of the Chemical Society of Japan, 2017, 90(6): 627-648.
[21] PENG X, PENG L, WU C, et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews, 2014, 43(10): 3303-3323.
[22] HUANG X, TAN C, YIN Z, et al. 25th anniversary article: hybrid nanostructures based on two‐dimensional nanomaterials [J]. Advanced Materials, 2014, 26(14): 2185-2204.
[23] YANG W, ZHANG X, XIE Y, et al. Advances and challenges in chemistry of two-dimensional nanosheets [J]. Nano Today, 2016, 11(6): 793-816.
[24] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides [J]. ACS Nano, 2012, 6(2): 1322-1331.
[25] MENG Y, JIN L, CAI B, et al. Facile fabrication of flexible core-shell graphene/conducting polymer microfibers for fibriform supercapacitors [J]. RSC Advances, 2017, 7(61): 38187-38192.
[26] WU X, WU G, TAN P, et al. Construction of microfluidicoriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors [J]. Journal of Materials Chemistry A, 2018, 6(19): 8940-8946.
[27] ZHANG J, QIN S, WANG Z, et al. Highly conductive Ti3C2T x MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors [J]. Small, 2019, 15(8): 1804732.
[28] LI L, ZHANG N, ZHANG M, et al. Flexible Ti3C2T x/PEDOT: PSS films with outstanding volumetric capacitance for asymmetric supercapacitors [J]. Dalton Transactions, 2019, 48(5): 1747-1756.
[29] QIN L, TAO Q, GHAZALY A, et al. High‐performance ultrathin flexible solid‐state supercapacitors based on solution processable Mo1.33C MXene and PEDOT: PSS [J]. Advanced Functional Materials, 2018, 28(2): 1703808.
[30] GE Y, WANG C, CHAO Y, et al. A robust free-standing MoS2/poly (3, 4-ethylenedioxythiophene) : poly (styrenesulfonate) film for supercapacitor applications [J]. Electrochimica Acta, 2017, 235(1): 348-355.
[31] MOUSSA M, EI-KADY M, MA J, et al. Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density [J]. Composites Science and Technology, 2018, 160: 50-59.
[32] MEMON M, BAI W, SUN J, et al. Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11711-11719.
[33] YANG M, JEONG J, HUH Y, et al. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites [J]. Composites Science and Technology, 2015, 121(16): 123-128.
[34] TAN Y, LEE J. Graphene for supercapacitor applications [J]. Journal of Materials Chemistry A, 2013, 1(47): 14814-14843.
[35] KIM J W, CHOI B G. All-solid state flexible supercapacitors based on graphene/polymer composites [J]. Materials Chemistry and Physics, 2015, 159: 114-118.
[36] KASHANI H, CHEN L, ITO Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors [J]. Nano Energy, 2016, 19: 391-400.
[37] LI L, WANG K, HUANG Z, et al. Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode [J]. Nano Research, 2016, 9(10): 2938-2949.
[38] LI K, LIU X, CHEN S, et al. A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes [J]. Journal of Energy Chemistry, 2019, 32: 166-173.
[39] LIU L, NIU Z, ZHANG L, et al. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors [J]. Advanced Materials, 2014, 26(28): 4855-4862.
[40] BARAKZEHI M, MONTAZER M, SHARIF F, et al. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite [J]. Electrochimica Acta, 2019, 305: 187-196.
[41] HU R, ZHAO J, ZHU G, et al. Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor [J]. Electrochimica Acta, 2018, 261: 151-159.
[42] ZHU M, HUANG Y, DENG Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene [J]. Advanced Energy Materials, 2016, 6(21): 1600969.
[43] SONG B, LI L, LIN Z, et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities [J]. Nano Energy, 2015, 16: 470-478.
[44] LIU W, YAN X, CHEN J, et al. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers [J]. Nanoscale, 2013, 5(13): 6053-6062.
[45] PU X, LIU M, LI L, et al. Earable textile‐based in‐plane microsupercapacitors [J]. Advanced Energy Materials, 2016, 6(24): 1601254.
[46] GAO C, GAO J, SHAO C, et al. Versatile origami micro-supercapacitors array as a wind energy harvester [J]. Journal of Materials Chemistry A, 2018, 6(40): 19750-19756.
[47] SASIKALA S, LEE K, LIM J, et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors [J]. ACS Nano, 2017, 11(9): 9424-9434.
[48] QU G, CHENG J, LI X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode [J]. Advanced Materials, 2016, 28(19): 3646-3652.
[49] LU Z, FOROUGHI J, WANG C, et al. Superelastic hybrid CNT/graphene fibers for wearable energy storage [J]. Advanced Energy Materials, 2018, 8(8): 1702047.
[50] CAI S, HUANG T, CHEN H, et al. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors [J]. Journal of Materials Chemistry A, 2017, 5(43): 22489-22494.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!