Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (01): 10-18.doi: 10.12052/gdutxb.210197
Previous Articles Next Articles
Hu Xiao-min1, Long Zu-tao1, Li Min1,2
CLC Number:
[1] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109-132. [2] 王娜, 何晓明, 刘志强, 等. 一种基于用户播放行为序列的个性化视频推荐策略[J]. 计算机学报, 2020, 43(1): 123-135. WANG N, HE X M, LIU Z Q, et al. Personalized video recommendation strategy based on user’s playback behavior sequence [J]. Journal of Computer Science, 2020, 43(1): 123-135. [3] RAE A, MURDOCK V, POPESCU A, et al. Mining the web for points of interest[C]// Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012: 711-720. [4] 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563. ZHANG Y J, DONG Z, MENG X W. Research on personalized advertising recommendation system and their applications [J]. Journal of Computer Science, 2021, 44(3): 531-563. [5] 林穗, 郑志豪. 基于关联规则的客户行为建模与商品推荐研究[J]. 广东工业大学学报, 2018, 35(3): 90-94. LIN S, ZHENG Z H. A research of a recommender system based on customer behavior modeling by mining association rules [J]. Journal of Guangdong University of Technology, 2018, 35(3): 90-94. [6] 杨洁, 朱咸军, 周献中, 等. 基于混杂社会网络的个性化Web服务推荐方法[J]. 电子学报, 2020, 48(2): 341-349. YANG J, ZHU X J, ZHOU X Z, et al. Personalized web service recommendation based on heterogeneous social network [J]. Journal of Electronics, 2020, 48(2): 341-349. [7] RICCI F, ROKACH L, SHAPIRA B. Introduction to recommender systems handbook[M]. Berlin, Heidelberg: Springer, 2011: 1-35. [8] CHAI Z Y, LI Y L, HAN Y M, et al. Recommendation system based on singular value decomposition and multi-objective immune optimization[J]. IEEE Access, 2018, 7: 6060-6071. [9] 顾立志. 协同过滤数据稀疏性问题研究[J]. 计算机光盘软件与应用, 2014, 17(8) : 101-102. GU L Z. Research on data sparsity in collaborative filtering[J]. Computer CD Software and Applications, 2014, 17(8) : 101-102. [10] ZHANG L, QIN T, TENG P. Using key users of social networks to solve cold start problem in collaborative recommendation systems [J]. Information Technology Journal, 2013, 12(22): 7004-7008. [11] SUN Y, HAN J, YAN X, et al. Path Sim: meta path-based top-k similarity search in heterogeneous information networks [J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003. [12] SEDHAIN S, SANNER S, BRAZIUNAS D, et al. Social collaborative filtering for cold-start recommendations[C]//Proceedings of the 8th ACM Conference on Recommender systems. New York: ACM, 2014: 345-348. [13] BEEL J, LANGER S, GENZMEHR M, et al. Research paper recommender system evaluation: a quantitative literature survey[C]//Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation. New York: ACM, 2013: 15-22. [14] LIN Q, JIN G, MA Y, et al. A diversity enhanced resource allocation strategy for decomposition-based multi-objective evolutionary algorithm [J]. IEEE Transactions on Cybernetics, 2018, 48(8): 2388-2401. [15] FAN J, PAN W, JIANG L. An improved collaborative filtering algorithm combining content-based algorithm and user activity[C] //2014 International Conference on Big Data and Smart Computing (BIGC- OMP) . Bangkok: IEEE, 2014: 88-91. [16] ADOMAVICIUS G, KWON Y. Improving aggregate recommendation diversity using ranking-based techniques [J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(5): 896-911. [17] CHU P M, TSAI H R, LEE S J, et al. Improving collaborative filtering recommendation[C] //Proceedings of 2018 3rd International Conference on Control, Automation and Artificial Intelligence (CAAI 2018). [S. l. ]: Atlantis Press, 2018: 114-116. [18] ZHOU T, SU R Q, LIU R R, et al. Accurate and diverse recommendations via eliminating redundant correlations [J]. New Journal of Physics, 2009, 11(12): 123008. [19] 方晨, 张恒巍, 王娜, 等. 基于随机游走和多样性图排序的个性化服务推荐方法[J]. 电子学报, 2018, 46(11): 2773-2780. FANG C, ZHANG H W, WANG N, et al. Personalized service recommendation method based on random walk and diversified graph ranking [J]. Journal of Electronics, 2018, 46(11): 2773-2780. [20] WANG P, ZUO X, GUO C, et al. A multi-objective genetic algorithm based hybrid recommendation approach[C]//2017 IEEE Symposium Series on Computational Intelligence (SSCI) . Honolulu: IEEE, 2017: 1-6. [21] HOU Z, LIU J. A two-phase evolutionary algorithm for solving the accuracy-diversity dilemma in recommendation[C]//2020 IEEE Congress on Evolutionary Computation (CEC) . Glasgow: IEEE, 2020: 1-8. [22] LIU X F, ZHAN Z H, GAO Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2018, 23(4): 587-602. [23] JAMBOR T, WANG J. Optimizing multiple objectives in collaborative filtering[C] //Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 55-62. [24] WANG S, GONG M, LI H, et al. Multi-objective optimization for long tail recommendation[J]. Knowledge-Based Systems, 2016, 104: 145-155. [25] RIBEIRO M T, LACERDA A, VELOSO A, et al. Pareto-efficient hybridization for multi-objective recommender systems[C] //Proceedings of the 6th ACM Conference on Recommender Systems. New York: ACM, 2012: 19-26. [26] ZUO Y, GONG M, ZENG J, et al. Personalized recommendation based on evolutionary multi-objective optimization [Research Frontier] [J]. IEEE Computational Intelligence Magazine, 2015, 10(1): 52-62. [27] CUI L, PENG O, FU X, et al. A novel multi-objective evolutionary algorithm for recommendation systems[J]. Journal of Parallel and Distributed Computing, 2017, 103: 53-63. [28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [29] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems [J]. ACM Transactions on Information Systems (TOIS) , 2004, 22(1): 5-53. [30] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295. [31] ZHOU T, REN J, MEDO M, et al. Bipartite network projection and personal recommendation [J]. Physical Review E, 2007, 76(4): 046115. |
[1] | Zhou Yi-lu, Wang Zhen-you, Li Ye-zi, Li Feng. A Quadratic Scalarizing Function in MOEA/D and its Performance on Multi and Many-Objective Optimization [J]. Journal of Guangdong University of Technology, 2018, 35(04): 37-44. |
[2] | Peng Jia-en, Deng Xiu-qin, Liu Tai-heng, Liu Fu-chun, Li Wen-zhou. A Recommendation Algorithm of Latent Factor Model Fused with the Social and Tag Information [J]. Journal of Guangdong University of Technology, 2018, 35(04): 45-50. |
[3] | Hu Hui-cheng, Chen Ping-hua. Research on Implicit Trust Relationship Aware Recommendation Algorithm [J]. Journal of Guangdong University of Technology, 2017, 34(03): 43-48. |
[4] | JIANG Shan, CHEN Lei, LIU Hai-Lin. Multi-objective Evolutionary Algorithm with Weight Preference [J]. Journal of Guangdong University of Technology, 2016, 33(01): 67-72. |
|