Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 69-78.doi: 10.12052/gdutxb.220132
• Computer Science and Technology • Previous Articles Next Articles
Zhang Ling1, Li Rong-zhen1, Zheng Su2
CLC Number:
[1] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-08) [2022-08-20]. https://arxiv.org/abs/1409.2329v5. [2] TURKOGLU M, HANBAY D, SENGUR A. Multi-model L- STM-based convolutional neural networks for detection of apple diseases and pests [J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 3335-3345. [3] AGARAP A F. A neural network architecture combining gated recurrent unit (GRU) and support vector machine(SVM) for intrusion detection in network traffic data[EB/OL]. (2017-09-10) [2022-08-20]. https://arxiv.org/abs/1709.0302. [4] CANIZO M, TRIGUERO I, CONDE A, et al. Multi-head CNN-RNN for multi-time series anomaly detection: an ind- ustrial case study [J]. Neurocomputing, 2019, 363: 246-260. [5] KIM Y. Convolutional neural network for sentence classification[EB/OL]. arXiv: 1408.5882 (2014-09-03) [2022-08-20]. https://arxiv.org/abs/1408.5882. [6] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[EB/OL]. arXiv: 1605.05273(2016-06-08) [2022-08-20]. https://arxiv.org/abs/1605.05273. [7] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International Conference on Learning Representation. New Orleans: ICLR, 2019: 1-17. [8] KIPF, WELLING M, THOMAS N. Semi-supervisedclassification with graph convolutional networks[C]//International Conference on Learning Representations. Toulon, France: ICLR, 2017: 1-14. [9] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]//33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 7370-7377. [10] DRASKO R, BOZO K. Review spam detection using mac- hine learning[C]//23th International Scientific-Professional Conference on Information Technology. New Delhi, India: IT, 2018: 1-4. [11] BAKSHI R K, KAUR N, KAUR R, et al. Opinion mining and sentiment analysis[C]//Computing for Sustainable Glo-bal Development. New Delhi, India: INDIACom, 2016: 452-455. [12] BOUAZIZ A, DARTIGUES-PALLEZ C, PEREIRA C D C, et al. Short text classification using semantic random forest [J]. Springer International Publishing, 2014, 8646: 288-299. [13] 方澄, 李贝, 韩萍. 基于全局特征图的半监督微博文本情感分类[J]. 信号处理, 2021, 37(6): 1066-1074. FANG C, LI B, HAN P. Semi-supervised microblog text sentiment classification based on global feature graph [J]. Journal of Signal Processing, 2021, 37(6): 1066-1074. [14] 崔婉秋, 杜军平, 寇菲菲, 等. 面向微博短文本的社交与概念化语义扩展搜索方法[J]. 计算机研究与发展, 2018, 55(8): 1641-1652. CUI W Q, DU J P, KOU F F, et al. The social and conceptual semantic extended search method for microblog short text [J]. Journal of Computer Reasearch and Development, 2018, 55(8): 1641-1652. [15] WANG G, LI C, WANG W, et al. Joint embedding of words and labels for text classification[C]//Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: NAACL-HLT, 2018: 461-469. [16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Conference and Workshop on Neural Information Processing Systems. Long Beach, California, U- SA: ACM, 2017: 6000-6010. [17] 张万杰. 引入标签语义信息的多标签文本分类[J]. 计算机应用, 2021, 8: 1672-9528. [18] JI F, YANG J L, ZHANG Q, et al. GraphFlow: a new graph convolutional network based on parallel flows [C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: ICASSP, 2020: 3332-3336. [19] 郑诚, 董春阳, 黄夏炎. 基于BTM图卷积网络的短文本分类方法[J]. 计算机工程与应用, 2021, 57(4): 155-160. ZHENG C, DONG C Y, HUANG X Y. Short text classification method based on BTM graph convolution network [J]. Computer Engineering and Application, 2021, 57(4): 155-160. [20] 辛媛. 基于图神经网络的单标签文本分类[D]. 合肥: 中国科技技术大学, 2021, 1-61. [21] 申艳光, 贾耀清. 基于词共现与图卷积的文本分类方法[J]. 计算机工程与应用, 2021, 57(11): 173-178. SHEN Y G, JIA Y Q. Text categorization method based on word co-occurrence and graph convolution [J]. Computer Engineering and Application, 2021, 57(11): 173-178. [22] 郑诚, 陈杰, 董春阳. 结合图卷积的深层神经网络用于文本分类[J]. 计算机工程与应用, 2022, 58(7): 206-212. ZHENG C, CHEN J, DONG C Y. Deep neural network combined with graph convolution for text classification [J]. Computer Engineering and Application, 2022, 58(7): 206-212. [23] LIU X, YOU X, ZHANG X, et al. Tensor graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, US-A: AAAI, 2020: 8409-8416. [24] WU F, ZHANG T, SOUZA A, et al. Simplifying graph convolutional networks[C]//International Conference on Machine Learning. Long Beach, CA, USA: ICML, 2019: 1-14. [25] ZHANG Y F, YU X L, CUI ZY, et al. Every document owns its structure: inductive text classification via graph neural networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle, Washington, United States: ACL, 2020: 334-339. [26] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. arXiv: 1511.05493(2017-09-22) [2022-08-20]. https://arxiv.org/abs/1511.05493. [27] ROMERO A, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. arXiv:1710.10903(2018-02-04) [2022-08-20]. https://arxiv.org/abs/1710.10903. [28] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification [C]//The 2020 Conference on Empirical Methods in Natural Language Processing. Online: EMNLP, 2020: 4927-4936. [29] LIN Y X, MENG Y X, SUN X F, et al. BertGCN: transductive text classification by combining GCN an BERT[C]//Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand: ACL-IJCNLP, 2021: 1456-1462. |
[1] | Liang Yu-chen, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information [J]. Journal of Guangdong University of Technology, 2024, 41(01): 27-33. |
[2] | Chen Rui, Cai Nian, Luo Zhi-hao, Liu Xuan, Li Jian. Individual Survival Analysis of Breast Cancer Based on Multi-task Recurrent Neural Network Banded Regression Model [J]. Journal of Guangdong University of Technology, 2024, 41(01): 34-40. |
[3] | Yang Zhen-xiong, Tan Tai-zhe. Low Illumination Image Enhancement Algorithm Based on Generative Adversarial Network [J]. Journal of Guangdong University of Technology, 2024, 41(01): 55-62. |
[4] | Kuang Yong-nian, Wang Feng. Video Frame Anomaly Behavior Detection Based on Foreground Area Generative Adversarial Networks [J]. Journal of Guangdong University of Technology, 2024, 41(01): 63-68,92. |
[5] | Liu Jin-neng, Xiao Yan-shan, Liu Bo. A Least Squares Twin Support Vector Machine Method with Uncertain Data [J]. Journal of Guangdong University of Technology, 2024, 41(01): 79-85. |
[6] | Zeng An, Chen Xu-zhou, Ji Yu-Zhu, Pan Dan, Xu Xiao-Wei. Cardiac Multiclass Segmentation Method Based on Self-attention and 3D Convolution [J]. Journal of Guangdong University of Technology, 2023, 40(06): 168-175. |
[7] | Wu Xiao-ling, Chen Xiang-wang, Zhan Wen-tao, Ling Jie. Chinese Medical Named Entity Recognition Based on Gated Attention Unit [J]. Journal of Guangdong University of Technology, 2023, 40(06): 176-184. |
[8] | Gan Meng-kun, Zeng An, Zhang Xiao-bo. Aortic Re-coarctation Prediction Research Based on Swin-Unet [J]. Journal of Guangdong University of Technology, 2023, 40(05): 34-40. |
[9] | Zheng Yu, Cai Nian, Ouyang Wen-sheng, Xie Yi-ying, Wang Ping. Super-resolution Segmentation of Hepatobiliary Ducts Based on Deep Correlation Mechanism [J]. Journal of Guangdong University of Technology, 2023, 40(05): 41-46. |
[10] | Wu Zhen-hua, Tang Wen-yan, Lyu Wen-ge, Chen Ru-jie, Hou Meng-hua, Li De-yuan. Fast Image Segmentation with Multilevel Threshold of Two-dimensional Entropy Based on ISSA and Integral Graph [J]. Journal of Guangdong University of Technology, 2023, 40(05): 47-55. |
[11] | Li Yang, Zhou Ying. Differential Privacy Trajectory Data Publishing Based on Orientation Control [J]. Journal of Guangdong University of Technology, 2023, 40(05): 56-63. |
[12] | Dai Bin, Zeng Bi, Wei Peng-fei, Huang Yong-jian. A Task-oriented Dialogue Policy Learning Method of Improved Discriminative Deep Dyna-Q [J]. Journal of Guangdong University of Technology, 2023, 40(04): 9-17,23. |
[13] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[14] | Zhang Jia-yue, Zhang Ling. Knowledge Distillation Method Based on Incremental Class Activation Knowledge [J]. Journal of Guangdong University of Technology, 2023, 40(04): 24-30,36. |
[15] | Wu Ya-di, Chen Ping-hua. A Music Recommendation Model Based on Users' Long and Short Term Preferences and Music Emotional Attention [J]. Journal of Guangdong University of Technology, 2023, 40(04): 37-44. |
|