Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (05): 94-101.doi: 10.12052/gdutxb.220137

• Comprehensive Studies • Previous Articles    

Fault Line Selection of Grounding System Based on CEEMD and Sample Entropy Algorithm

Ma Chao1, Lin Xi1, Liu Zhen-xiang2   

  1. 1. Jiangmen Power Supply Bureau, Guangdong Power Grid Co., Ltd., Jiangmen 529000, China;
    2. Guangzhou Sitai Information Technology Corporation, Guangzhou 510006, China
  • Received:2022-09-09 Published:2023-09-26

Abstract: For the resonant grounding system of the distribution network with the neutral point grounded through the arc suppression coil, there are problems such as inconspicuous fault current characteristics, difficulty in threshold setting and low accuracy of fault line selection when a single-phase grounding fault occurs. In this research,a threshold-free fault line selection method based on Complementary Ensemble Empirical Mode Decomposition (Complementary Ensemble Empirical Mode Decomposition, CEEMD) and sample entropy is proposed. By analyzing the transient characteristics of the zero-sequence current of the fault line, the high-frequency components of the oscillation and attenuation characteristics are selected as the observation objects. A fast extraction method and fault characterization strategy of high-frequency components based on CEEMD algorithm are proposed, and the reliability of sample entropy based on high-frequency components as a threshold-free line selection criterion is explored. The resonant grounding system model under disturbance under multiple scenarios is simulated and established, and the feasibility of the proposed algorithm in engineering scenarios such as different line positions, fault closing angle, grounding resistance and arc suppression coil compensation degree is verified. Among them, the proposed algorithm can realize fast fault line selection that only collects half-cycle current. In addition, the method does not need to set a threshold value, and is not affected by different operating modes of the system, which is easy for engineering application of multi-scenario fault line selection.

Key words: distribution network, resonant grounding system, single-phase grounding fault line selection, complementary ensemble empirical mode decomposition, sample entropy

CLC Number: 

  • TM862
[1] 郭清滔, 吴田. 小电流接地系统故障选线方法综述[J]. 电力系统保护与控制, 2010, 38(2): 146-152.
GUO Q T, WU T. Survey of the methods to select fault line in neutral point ineffectively grounded power system [J]. Power System Protection and Control, 2010, 38(2): 146-152.
[2] 邵庆祝, 郭霖徽, 刘亚东, 等. 基于LSTM模型的配电网单相接地故障辨识方法[J]. 广东电力, 2019, 32(9): 100-106.
SHAO Q Z, GUO L H, LIU Y D, et al. Identification method for single phase ground fault of distribution network based on LSTM model [J]. Guangdong Electric Power, 2019, 32(9): 100-106.
[3] 薛颢, 李延军, 程虎. 一种利用零序功率方向的小电流接地系统单相接地故障选线判据[J]. 广东电力, 2018, 31(4): 132-138.
XUE H, LI Y J, CHENG H. Criterion for single-phase grounding fault line selection for small current grounding system by using zero sequence power direction [J]. Guangdong Electric Power, 2018, 31(4): 132-138.
[4] 唐轶, 陈庆. 基于零序暂态电流方向判断的小电流接地选线方法[J]. 电网技术, 2007(19): 79-82.
TANG Y, CHEN Q. A method of single-phase grounded feeder detection in indirectly earthed power system based on judging zero-sequence transient current direction [J]. Power System Technology, 2007(19): 79-82.
[5] 张国军, 韩静静, 任荣, 等. 多判据融合小电流单相接地故障选线方法研究与实验[J]. 电工电能新技术, 2015, 34(4): 56-61.
ZHANG G J, HAN J J, REN R, et al. Research and experiment for fault line detection in non-solidly grounded system using multi-criteria combination [J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(4): 56-61.
[6] 单喜斌, 麻亚鹏, 宋宗勋, 等. 基于多源信息融合的配电网小电流接地选线方法[J]. 自动化技术与应用, 2019, 38(4): 102-106.
SHAN X B, MA Y P, SONG Z X, et al. Small current earthed feeder selection method of distribution based on multi-source information fusion [J]. Techniques of Automation and Applications, 2019, 38(4): 102-106.
[7] 束洪春, 龚振, 田鑫萃, 等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术, 2019, 43(3): 1041-1053.
SHU H C, GONG Z, TIAN X C, et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum [J]. Power System Technology, 2019, 43(3): 1041-1053.
[8] 许峻宁, 陈璟华, 荣泽成, 等. 基于改进蝙蝠算法的配电网故障区段定位[J]. 广东工业大学学报, 2020, 37(5): 62-67.
XU J N, CHEN J H, RONG Z C, et al. Fault segment location of distribution network based on improved bat algorithm [J]. Journal of Guangdong University of Technology, 20, 37(5): 62-67.
[9] 宋金钊, 李永丽, 石峥, 等. 一种新的谐振接地系统单相接地故障选线方法[J]. 电力系统保护与控制, 2017, 56(6): 9-15.
SONG J Z, LI Y L, SHI Z, et al. A fault line selection method for resonant earthed system with high accuracy [J]. Power System Protection and Control, 2017, 56(6): 9-15.
[10] 邵文权, 程畅, 卫晓辉, 等. 利用暂态电流Hausdorff距离的谐振配电网故障选线方案[J]. 电力系统保护与控制, 2022, 50(8): 33-42.
SHAO W Q, CHENG C, WEI X H, et al. Fault line selection scheme using the Hausdorff distance of transient current in resonant distribution networks [J]. Power System Protection and Control, 2022, 50(8): 33-42.
[11] 韩祥民, 刘晓波, 刘敏, 等. 基于改进EEMD与GA-BP的谐振接地故障选线方法[J]. 智慧电力, 2021, 49(12): 80-87.
HAN X M, LIU X B, LIU M, et al. Resonant grounding fault line selection method based on improved EEMD and GA-BP model [J]. Smart Power, 2021, 49(12): 80-87.
[12] 魏科文, 张靖, 何宇, 等. 基于VMD和相关性聚类的谐振接地系统单相接地故障选线[J]. 电力系统保护与控制, 2021, 49(22): 105-113.
WEI K W, ZHANG J, HE Y, et al. Single-phase grounding fault line selection in a resonant grounding system based on VMD and correlation clustering [J]. Power System Protection and Control, 2021, 49(22): 105-113.
[13] 王建元, 朱永涛, 秦思远. 基于方向行波能量的小电流接地系统故障选线方法[J]. 电工技术学报, 2021, 36(19): 4085-4096.
WANG J Y, ZHU Y T, QIN S Y. Fault line selection method for small current grounding system based on directional traveling wave energy [J]. Advanced Technology of Electrical Engineering and Energy, 2021, 36(19): 4085-4096.
[14] 薛永端, 张秋凤, 颜廷纯, 等. 综合暂态与工频信息的谐振接地系统小电流接地故障选线[J]. 电力系统自动化, 2014, 38(24): 6.
XUE Y D, ZHANG Q F, YAN T C, et al. Faulty feeder identification based on combined transient and power-frequency components in resonant grounded systems [J]. Automation of Electric Power Systems, 2014, 38(24): 6.
[15] 吴君, 谢逸飞, 张长森. 基于暂态高频分量的故障投票选线方法[J]. 电子科技, 2022, 35(7): 64-70.
WU J, XIE Y F, ZHANG C S. Fault voting method based on transient high frequency components [J]. Electronic Technology, 2022, 35(7): 64-70.
[16] FENG Z, CHEN X, LIANG M. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions [J]. Mechanical Systems & Signal Processing, 2015, 52-53: 360-375.
[17] 吴乐鹏, 黄纯, 林达斌, 等. 基于暂态小波能量的小电流接地故障选线新方法[J]. 电力自动化设备, 2013, 33(5): 70-75.
WU L P, HUANG C, LIN D B, et al. Faulty line selection based on transient wavelet energy for non-solid-earthed network [J]. Electric Power Automation Equipment, 2013, 33(5): 70-75.
[18] ZHANG B H, HAO Z G, BO Z Q. New development in relay protection for smart grid [J]. Protection and Control of Modern Power Systems, 2016, 1(1): 121-127.
[19] 徐耀, 田书, 杨淇翔. 综合高低频段分量的谐振接地系统故障选线[J]. 电力系统及其自动化学报, 2021, 33(10): 9.
XU Y, TIAN S, YANG Q X. Fault feeder detection in resonant grounding system by combining high-and low-frequency components [J]. Proceedings of the CSU-EPSA, 2021, 33(10): 9.
[20] 庞清乐. 小电流接地故障选线与定位技术[M]. 北京: 电子工业出版社, 2010.
[21] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[22] 宏爱松, 李艳丰, 刘保辉. 基于EEMD及能量变化曲线的配电网故障选线[J]. 东北电力技术, 2021, 42(6): 14-18.
HONG A S, LI Y F, LIU B H. Fault line selection for distribution networks based on EEMD and energy change curve [J]. Northeast Electric Power Technology, 2021, 42(6): 14-18.
[23] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method [J]. Adv Adapt Data Anal, 2010, 2(2): 135-156.
[24] 高桂革, 原阔, 曾宪文, 等. 基于改进CEEMD-CS-ELM的短期风速预测[J]. 太阳能学报, 2021, 42(7): 284-289.
GAO G G, YUAN K, ZENG X W, et al. Short-term wind speed prediction based on improved CEEMD-CS-ELM [J]. Acta Energiae Solaris Sinica, 2021, 42(7): 284-289.
[25] RICHMAN J S, RANDALL M J. Physiological time-series analysis using approximate entropy and sample entropy [J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6): H2039-H2049.
[1] Zheng Shi-ming, Lin Ze-xin, Huang Yuan-fang, Li Wang-jun, Peng Xian-gang. An Reliability Evaluation of Distribution Network Based on Graph Model Integration Technology [J]. Journal of Guangdong University of Technology, 2022, 39(03): 63-69.
[2] Xu Jun-ning, Chen Jing-hua, Rong Ze-cheng, Wu Ning. Fault Section Location of Distribution Network Based on Improved Bat Algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(05): 62-67.
[3] Rong Ze-cheng, Chen Jing-hua, Guo Zhuang-zhi, Xu Jun-ning, Chen You-peng. A Fault Segment Location Method for DG Distribution Network Based on Nonlinear Complementary Constraints [J]. Journal of Guangdong University of Technology, 2020, 37(04): 51-58.
[4] Lei Rui-sheng, Ling Bingo Wing-Kuen. A Heart Rate Variability Analysis via Modified Multi-time Scale Permutation Entropy [J]. Journal of Guangdong University of Technology, 2019, 36(03): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!