Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (05): 8-14.doi: 10.12052/gdutxb.220166

• Extenics and Innovation Methods • Previous Articles    

Extension Intelligent Evaluation Method and Its System of Dust Concentration in Coal Mines

Rui Guo-xiang1, Feng Jian-sheng1, Chen Xin2,3, Yang Chun-yan2,3   

  1. 1. Chahasu Coal Mine, SPIC Nei Mongol Energy Co., Ltd., Ordos 017209, China;
    2. Institute of Extenics and Innovation Methods, Guangdong University of Technology, Guangzhou 510006, China;
    3. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-11-07 Published:2023-09-26

Abstract: There are many factors involved in the evaluation of coal mine dust concentration, and the output evaluation results lack comprehensiveness when the single type of dust concentration is taken as the evaluation standard. In this research, a comprehensive evaluation method of coal mine dust concentration is established by using the superiority evaluation method in the extension innovation method, and the corresponding extension intelligent evaluation software is developed on the C++platform. First, many kinds of dust in the environment is analyzed, the data queried to determine the measurement indicators and the harmfulness of various kinds of dust, and the weight coefficient set, then an appropriate correlation function selected to calculate the degree of dust concentration in the environment meeting the requirements. Finally, a relatively comprehensive conclusion is obtained through the calculation and analysis of the comprehensive correlation function, by which the hazard of the coal mine dust concentration in a certain environment is comprehensively evaluated. The calculation and analysis process adopts the self-designed extension intelligent evaluation software of the coal mine dust concentration, which can intelligently output coping strategies according to the calculation results.

Key words: extension innovation method, correlation function, method of merit evaluation, coal mine, dust concentration, extension intelligent evaluation

CLC Number: 

  • TH122
[1] 谢鹏程, 陈青山, 李响. 基于机器视觉的工矿现场粉尘实时监测[J]. 工矿自动化, 2017, 43(3): 61-65.
XIE P C, CHEN Q S, LI X. Real-time dust monitoring for industrial site based on machine vision [J]. Industry and Mine Automation, 2017, 43(3): 61-65.
[2] 靳华伟, 谢品华, 胡仁志, 等. 呼吸性粉尘吸收系数的光声光谱探测[J]. 光谱学与光谱分析, 1993, 39(7): 1993-1998.
JIN H W, XIE P H, HU R Z, et al. Study on photo-acoustic spectrum detection technology of respiratory dust absorption coefficient [J]. Spectroscopy and Spectral Analysis, 19, 39(7):, 1993, 39(7): 1993-1998.
[3] 谭德军, 谢巨天, 简季, 等. 万盛采矿区粉尘污染农作物光谱特性分析[J]. 国土资源遥感, 2013, 25(2): 121-130.
TAN D J, XIE J T, JIAN J, et al. Analysis on spectral characteristics of dust polluted crops in Wansheng coal mining district [J]. Remote Sensing for Land and Resources, 2013, 25(2): 121-130.
[4] 付士根, 亢永, 王庆. 基于光散射法粉尘个体监测仪研制[J]. 中国安全生产科学技术, 2021, 17(6): 149-153.
FU S G, KANG Y, WANG Q. Development of individual dust monitor based on light scattering method [J]. Journal of Safety Science and Technology, 2021, 17(6): 149-153.
[5] 李德文, 陈建阁, 安文斗, 等. 电荷感应式粉尘浓度检测技术[J]. 能源与环保, 2018, 40(8): 5-9.
LI D W, CHEN J G, AN W D, et al. Dust concentration detection technology based on charge induction method [J]. China Energy and Environmental Protection, 2018, 40(8): 5-9.
[6] 黄成玉, 张全柱, 邓永红, 等. 新型煤矿粉尘浓度监测系统的设计[J]. 矿业研究与开发, 2011, 31(1): 53-55.
HUANG C Y, ZHANG Q Z, DENG Y H, et al. Design of a new type dust concentration detection system for coal mine [J]. Mining Research and Development, 2011, 31(1): 53-55.
[7] 李宗伦, 赵修良, 彭丽婧, 等. β射线粉尘测量仪在煤矿粉尘浓度监测中的应用[J]. 中国煤炭, 2010, 36(3): 65-67.
LI Z L, ZHAO X L, PENG L J, et al. Application of β-ray dust tester for dust monitoring in coal mines [J]. China Coal, 2010, 36(3): 65-67.
[8] 叶方平, 方朝阳, 徐显金, 等. 基于图像透光率的粉尘浓度测量算法研究[J]. 应用光学, 2022, 43(3): 496-502.
YE F P, FANG C Y, XU X J, et al. Dust concentration measurement algorithm based on image transmittance [J]. Journal of Applied Optics, 2022, 43(3): 496-502.
[9] ZHANG H, NIE W, LIANG Y, et al. Development and performance detection of higher precision optical sensor for coal dust concentration measurement based on Mie scattering theory [J]. Optics and Lasers in Engineering, 2021, 144: 106642.
[10] LI L, ZHANG R, SUN J, et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm [J]. Journal of Environmental Health Science and Engineering, 2021, 19(1): 401-414.
[11] CHENG X Z, CAO M Y, COLLIER M. An on-line detection system for coal mine dust[C]// LARRY Y C. The World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2008: 4166-4171.
[12] 周兆海, 姚有利, 程超男. 基于FAHP-GRA的煤矿粉尘综合安全评价体系研究[J]. 山西大同大学学报(自然科学版), 2021, 37(3): 82-86.
ZHAO Z H, YAO Y L, CHENG C N. Study on comprehensive safety evaluation system of coal mine dust based on FAHP-GRA [J]. Journal of Shanxi Datong University (Natural Science Edition), 2021, 37(3): 82-86.
[13] WANG W, WANG H, ZHANG B, et al. Coal and gas outburst prediction model based on extension theory and its application [J]. Process Safety and Environmental Protection, 2021, 154: 329-337.
[14] CABALLERO-GALLARDO K, OLIVERO-VERBEL J. Mice housed on coal dust-contaminated sand: a model to evaluate the impacts of coal mining on health [J]. Toxicology and Applied Pharmacology, 2016, 294: 11-20.
[15] OPARIN V N, POTAPOV V P, GINIYATULLINA O L, et al. Evaluation of dust pollution of air in Kuzbass coal-mining areas in winter by data of remote earth sensing [J]. Journal of Mining Science, 2014, 50(3): 549-558.
[16] 杨春燕, 蔡文. 可拓学[M]. 北京: 科学出版社, 2014: 34-167.
[17] 杨春燕. 可拓创新方法[M]. 北京: 科学出版社, 2017: 118-144.
[18] 王芳, 张磊, 胡建勋. 基于可拓层次分析法的工作面粉尘危险性评价研究[J]. 中小企业管理与科技(上旬刊), 2014(3): 315-316.
[19] 中华人民共和国卫生部. 工作场所空气中粉尘测定 第1部分: 总粉尘浓度: GBZ/T 192.1-2007 [S]. 北京: 人民卫生出版社, 2007.
[20] 中华人民共和国卫生部. 工作场所空气中粉尘测定 第2部分: 呼吸性粉尘浓度: GBZ/T 192.1-2007 [S]. 北京: 人民卫生出版社, 2007.
[21] 荆登峰. 阳泉某矿岩巷粉尘危害现状[J]. 煤矿机械, 2022, 43(4): 95-97.
JING D F. Present situation of dust hazard in rock roadway of mine in Yangquan [J]. Coal Mine Machinery, 2022, 43(4): 95-97.
[22] 李德文, 隋金君, 刘国庆, 等. 中国煤矿粉尘危害防治技术现状及发展方向[J]. 矿业安全与环保, 2019, 46(6): 1-7.
LI D W, SUI J J, LIU G Q, et al. Technical status and development direction of coal mine dust hazard prevention and control technology in China [J]. Mining Safety & Environmental Protection, 2019, 46(6): 1-7.
[23] 王文宽. 煤矿粉尘综合防治体系构建探索[J]. 山西煤炭, 2021, 41(3): 2-8.
WANG W K. Exploration on comprehensive dust prevention and control system construction in mines [J]. Shanxi Coal, 2021, 41(3): 2-8.
[24] 张立. 矿井粉尘综合治理技术的研究[J]. 煤, 2017, 26(5): 36-37.
[25] 刘增超, 史东涛. 煤矿粉尘治理技术现状及展望[J]. 科技信息(科学教研), 2008(7): 299.
[1] Guo Heng-fa, Li Xing-sen. A Structure Extension Design of Shuttle Shelf in AS/RS [J]. Journal of Guangdong University of Technology, 2022, 39(06): 123-129.
[2] Chen Mei-rong, Jiang Fan, Huang Hao-xiang, Huang Hai-tao, Huang Yu-qin. Study and Application of Substance-field Extension Method [J]. Journal of Guangdong University of Technology, 2022, 39(02): 19-25,90.
[3] Zhang Zi-ran, Li Xing-sen, Guo Heng-fa, Wang Hao. A Creative Generation Method Solving Design Problems Based on Extenics—Removing the Cigarette Butts on the Ground of Ouzhuang Metro Station as an Example [J]. Journal of Guangdong University of Technology, 2021, 38(06): 103-110.
[4] Gao Hong, Xi Chang-qing, Liu Wei. Application of Extension Analysis and Decision: A Case Study of College Enrollment System [J]. Journal of Guangdong University of Technology, 2021, 38(01): 13-20.
[5] Li Zi-hao, Yang Chun-yan, Li Wen-jun. An Application of Extension Innovation Method in Generator Innovation Design [J]. Journal of Guangdong University of Technology, 2020, 37(01): 1-6.
[6] Li Yu-jie, Li Wei-hua. An Extension Innovation Software Design Based on the First Creative Method [J]. Journal of Guangdong University of Technology, 2017, 34(02): 6-11.
[7] Shi Ji-lei, Zhu Shu-hai, Lu Hua-jing, Li Ri-hua. A Research on the Auto-correlation and Cross-correlation Function Based on Conductive Transformation [J]. Journal of Guangdong University of Technology, 2017, 34(01): 11-14,39.
[8] LI Wei-Hua, FU Xiao-Dong. A Research on Extension Innovation Software Architecture [J]. Journal of Guangdong University of Technology, 2016, 33(02): 1-4.
[9] YANG Chun-Yan, CAI Wen. Generating Creative Ideas for Production Based on Extenics [J]. Journal of Guangdong University of Technology, 2016, 33(01): 12-16.
[10] LUO Liang-Wei, YANG Chun-Yan. Study on Ceramic Logistics Packaging Design Based on
 Gene Extension Modular Design  
[J]. Journal of Guangdong University of Technology, 2015, 32(2): 11-16.
[11] YANG Chun-Yan, LI Zhi-Ming. Extenics Based Social Network Structure [J]. Journal of Guangdong University of Technology, 2014, 31(1): 1-6.
[12] Yang Cheng-ying1; Chen Yong2. Quantum Size Effects on Electronic Dynamics of Quasi-one-dimensional Nanowires [J]. Journal of Guangdong University of Technology, 2009, 26(2): 14-.
[13] Yang Cheng-ying1,Ding Jian-wen2 . A Study of the Correlation Between Tube-diameter and Chirality in Electronic Dynamics of Single-walled Carbon Nanotubes [J]. Journal of Guangdong University of Technology, 2008, 25(4): 5-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!