Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (06): 114-123.doi: 10.12052/gdutxb.230115
• Catalytic and Energy Materials • Previous Articles Next Articles
Wang Gui-lin, Chen Xin, Tang Tong-xin, Zou Wen-hao, Lin Zhan, Ye Kai-hang
CLC Number:
[1] FAUNCE T, STYRING S, WASIELEWSKI M R, et al. Artificial photosynthesis as a frontier technology for energy sustainability [J]. Energy & Environmental Science, 2013, 6(4): 1074-1076. [2] ARDO S, RIVAS D F, MODESTINO M A, et al. Pathways to electrochemical solar-hydrogen technologies [J]. Energy & Environmental Science, 2018, 11(10): 2768-2783. [3] JIAN L, LI M, LIU X, et al. Unveiling hierarchical dendritic Co3O4-SnO2 heterostructure for efficient water purification [J]. Nano Letters, 2023, 23(9): 3739-3747. [4] KONG W, ZHU D, ZHANG Y, et al. Electron donor coordinated metal-organic framework to enhance photoelectrochemical performance[J]. Angewandte Chemie International Edition, 2023, 62(33): e202308514. [5] PATI P B, WANG R, BOUTIN E, et al. Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water [J]. Nature Communications, 2020, 11(1): 3499. [6] WALTER M G, WARREN E L, MCKONE J R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473. [7] NIU W, MOEHL T, ADAMS P, et al. Crystal orientation-dependent etching and trapping in thermally-oxidised Cu2O photocathodes for water splitting [J]. Energy & Environmental Science, 2022, 15(5): 2002-2010. [8] CHOI J H, SEOK H J, SUNG D, et al. Electrodeposited copper oxides with a suppressed interfacial amorphous phase using mixed-crystalline ITO and their enhanced photoelectrochemical performances [J]. Journal of Energy Chemistry, 2023, 82: 277-286. [9] MCKONE J R, PIETERICK A P, GRAY H B, et al. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes [J]. Journal of the American Chemical Society, 2013, 135(1): 223-231. [10] XU Y, JIAN J, LI F, et al. Porous CuBi2O4 photocathodes with rationally engineered morphology and composition towards high-efficiency photoelectrochemical performance [J]. Journal of Materials Chemistry A, 2019, 7(38): 21997-22004. [11] WANG Y, HU J, LIU S, et al. Influence of grain size on photoelectrocatalytic performance of CuBi2O4 photocathodes [J]. International Journal of Hydrogen Energy, 2022, 47(89): 37774-37782. [12] CAO D, NASORI N, WANG Z, et al. p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting [J]. Journal of Materials Chemistry A, 2016, 4(23): 8995-9001. [13] BERGLUND S P, ABDI F F, BOGDANOFF P, et al. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting [J]. Chemistry of Materials, 2016, 28(12): 4231-4242. [14] SEO G, KIM B, HWANG S W, et al. High-performance bulky crystalline copper bismuthate photocathode for enhanced solar water splitting [J]. Nano Energy, 2021, 80: 105568. [15] LEE J, YOON H, KIM S, et al. Long-term stabilized high-density CuBi2O4/NiO heterostructure thin film photocathode grown by pulsed laser deposition [J]. Chemical Communications, 2019, 55(83): 12447-12450. [16] ABDI F F, BERGLUND S P. Recent developments in complex metal oxide photoelectrodes [J]. Journal of Physics D:Applied Physics, 2017, 50(19): 193002. [17] XU Y X, JIAN J, SU G R, et al. Bulk embedding of ferroelectric nanodomains in CuBi2O4 photocathodes enables boosted photoelectrochemical hydrogen generation[J]. Advanced Functional Materials, 2023, 33: 2213568. [18] ZHU L, BASNET P, LARSON S R, et al. Visible light-induced photoeletrochemical and antimicrobial properties of hierarchical CuBi2O4 by facile hydrothermal synthesis [J]. ChemistrySelect, 2016, 1(8): 1518-1524. [19] KANG D, HILL J C, PARK Y, et al. Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes [J]. Chemistry of Materials, 2016, 28(12): 4331-4340. [20] VARUNKUMAR K, SELLAPPAN R. Role of carbon protective layer on the photoelectrochemical performance of drop-casted CuBi2O4 photocathodes for water splitting [J]. Diamond and Related Materials, 2022, 130: 109547. [21] WANG F, CHEMSEDDINE A, ABDI F F, et al. Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films [J]. Journal of Materials Chemistry A, 2017, 5(25): 12838-12847. [22] LAMERS M, SAHRE M, MULLER M J, et al. Influence of post-deposition annealing on the photoelectrochemical performance of CuBi2O4 thin films [J]. APL Materials, 2020, 8(6): 061101. [23] LIU S, ZHOU J, LU Y, et al. Pulsed laser/electrodeposited CuBi2O4/BiVO4 pn heterojunction for solar water splitting [J]. Solar Energy Materials and Solar Cells, 2018, 180: 123-129. [24] AN W, YANG T, LIU C, et al. CuBi2O4 surface-modified three-dimensional graphene hydrogel adsorption and in situ photocatalytic Fenton synergistic degradation of organic pollutants [J]. Applied Surface Science, 2023, 615: 156396. [25] SONG A, PLATE P, CHEMSEDDINE A, et al. Cu: NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi2O4 thin film photocathodes [J]. Journal of Materials Chemistry A, 2019, 7(15): 9183-9194. [26] GOPANNAGARI M, REDDY K A J, INAE S, et al. High‐performance silver-doped porous CuBi2O4 photocathode integrated with NiO hole-selective layer for improved photoelectrochemical water splitting[J]. Advanced Sustainable Systems, 2300085. [27] MARY A S, MURUGAN C, PANDIKUMAR A. Uplifting the charge carrier separation and migration in co-doped CuBi2O4/TiO2 p-n heterojunction photocathode for enhanced photoelectrocatalytic water splitting [J]. Journal of Colloid and Interface Science, 2022, 608: 2482-2492. [28] SONG A, LI Z, WULAN B, et al. CuAlO2/CuBi2O4 heterojunction photocathodes with improved charge collection for efficient solar water splitting[J]. Journal of Alloys and Compounds, 2023: 170769. [29] FANG C, SU H, HU M, et al. Construction and performance of a novel CuBi2O4/In2O3 Z-scheme heterojunction photocatalyst [J]. Materials Science in Semiconductor Processing, 2023, 160: 107464. [30] SHI W, GUO F, LI M, et al. Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite [J]. Journal of Alloys and Compounds, 2019, 775: 511-517. [31] ZHANG F, SUN Y, LI M, et al. Solvothermal preparation of hydrangea-like CuBi2O4 twining TiO2 NTAs with enhanced photoelectrocatalytic dye degradation and hydrogen generation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 667: 131389. [32] WANG F, SEPTINA W, CHEMSEDDINE A, et al. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency [J]. Journal of the American Chemical Society, 2017, 139(42): 15094-15103. [33] GOTTESMAN R, SONG A, LEVINE I, et al. Pure CuBi2O4 photoelectrodes with increased stability by rapid thermal processing of Bi2O3/CuO grown by pulsed laser deposition [J]. Advanced Functional Materials, 2020, 30(21): 1910832. [34] SONG A, BOGDANOFF P, ESAU A, et al. Assessment of a W: BiVO4-CuBi2O4 tandem photoelectrochemical cell for overall solar water splitting [J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13959-13970. [35] QU L, TAN R, SIVANANTHAM A, et al. Point-defect engineering of nanoporous CuBi2O4 photocathode via rapid thermal processing for enhanced photoelectrochemical activity [J]. Journal of Energy Chemistry, 2022, 71: 201-209. [36] WEI S, WANG C, LONG X, et al. A oxygen vacancy-modulated homojunction structural CuBi2O4 photocathodes for efficient solar water reduction [J]. Nanoscale, 2020, 12(28): 15193-15200. [37] YE S, SHI W, LIU Y, et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency [J]. Journal of the American Chemical Society, 2021, 143(32): 12499-12508. [38] SONG X, LI W, LIU X, et al. Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires [J]. Journal of Energy Chemistry, 2021, 55: 154-161. [39] LIU G, CAI R, LYU Z, et al Ameliorating the carrier dynamics behavior via plasmonic Ag-modified CuBi2O4 inverse opal for the efficient photoelectrocatalytic reduction of CO2 to CO[J]. Journal of Catalysis, 2023, 424: 130-139. [40] WU H B, XIA B Y, YU L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production [J]. Nature Communications, 2015, 6(1): 6512. [41] YE K H, LI H, HUANG D, et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering [J]. Nature Communications, 2019, 10(1): 3687. [42] JING J, YANG J, LI W, et al. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution [J]. Advanced Materials, 2022, 34(3): 2106807. [43] LEE K, KIM S W, TODA Y, et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer [J]. Nature, 2013, 494(7437): 336-340. [44] BRUZIQUESI C G O, STOLZEMBURG M C P, DE SOUZA R R, et al. Cobalt as a sacrificial metal to increase the photoelectrochemical stability of CuBi2O4 films for water splitting [J]. International Journal of Hydrogen Energy, 2023, 48(9): 3456-3465. [45] CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces [J]. Science, 2005, 309(5735): 713-714. [46] CHOI Y H, YANG K D, KIM D H, et al. p-Type CuBi2O4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics [J]. Materials Letters, 2017, 188: 192-196. [47] LEE J M, BAEK J H, GILL T M, et al. A Zn: BiVO4/Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting [J]. Journal of Materials Chemistry A, 2019, 7(15): 9019-9024. [48] GOPANNAGARI M, REDDY D A, REDDY K A J, et al. Augmented photoelectrochemical water reduction: influence of copper vacancies and hole-transport layer on CuBi2O4 photocathode [J]. Journal of Materials Chemistry A, 2022, 10(12): 6623-6635. [49] LIU G, ZHENG F, LI J, et al. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene [J]. Nature Energy, 2021, 6(12): 1124-1132. [50] SUN M, CHEN W, JIANG X, et al. Optoelectrical regulation of CuBi2O4 photocathode via photonic crystal structure for solar-fuel conversion [J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43946-43954. [51] WANG X D, HUANG Y H, LIAO J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer [J]. Journal of the American Chemical Society, 2019, 141(34): 13434-13441. [52] CHEN R, FAN F, DITTRICH T, et al. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy [J]. Chemical Society Reviews, 2018, 47(22): 8238-8262. |
No related articles found! |
|