Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 122-128.doi: 10.12052/gdutxb.230125
• Comprehensive Studies • Previous Articles
Zhong Jian-jiao1, Luo Rong-chang2
CLC Number:
[1] SCOTT A. Learning to love CO2 [J]. Chemical & Engineering News, 2015, 93: 10-16. [2] JONES W D. Carbon capture and conversion [J]. Journal of the American Chemical Society, 2020, 142: 4955-4957. [3] 高志文, 肖林飞, 陈静, 等. 二氧化碳与环氧化合物合成环状碳酸酯的研究进展[J]. 催化学报, 2008, 29: 831-838. GAO Z W, XIAO L F, CHEN J, et al. Research progress in the synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Chinese Journal of Catalysis, 2008, 29: 831-838. [4] LUO R C, LIU X Y, CHEN M, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates [J]. ChemSusChem, 2020, 13: 3945-3966. [5] LUO R C, CHEN M, ZHOU F, et al. Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO2 into cyclic carbonates: recent advances, opportunities and challenges [J]. Journal of Materials Chemistry A, 2021, 9: 25731-25749. [6] LIANG J, HUANG Y B, CAO R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates [J]. Coordination Chemistry Reviews, 2019, 378: 32-65. [7] PAL T K, DE D, BHARADWAJ P K. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates [J]. Coordination Chemistry Reviews, 2020, 408: 213173-213215. [8] TAN L X, TAN B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications [J]. Chemical Society Reviews, 2017, 46: 3322-3356. [9] FONTANALS N, MARCé R M, BORRULL F, et al. Hypercrosslinked materials: preparation, characterisation and applications [J]. Polymer Chemistry, 2015, 6: 7231-7244. [10] GU Y L, SON S U, LI T, et al. Low-cost hypercrosslinked polymers by direct knitting strategy for catalytic applications [J]. Advanced Functional Materials, 2021, 31: 2008265. [11] KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2, 3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure [J]. The Journal of Organic Chemistry, 1993, 58: 6198-6202. [12] DESENS W, KOHRT C, FRANK M, et al. Highly efficient polymer-supported catalytic system for the valorization of carbon dioxide [J]. ChemSusChem, 2015, 8: 3815-3822. [13] XU Q, AN S H, NI Z H, et al. Construction of covalent organic frameworks with crown ether struts [J]. Angewandte Chemie International Edition, 2021, 60: 9959-9963. [14] SHEN J C, JIANG W L, GUO W D, et al. A rings-in-pores net: crown ether-based covalent organic frameworks for phase-transfer catalysis [J]. Chemical Communications, 2020, 56: 595-598. [15] KONG H Y, WANG T X, TAO Y, et al. Crown ether-based hypercrosslinked porous polymers for gold adsorption [J]. Separation and Purification Technology, 2022, 290: 120805. [16] HAO Y J, YAN X L, CHANG T, et al. Hydroxyl-anchored covalent organic crown-based polymers for CO2 fixation into cyclic carbonates under mild conditions [J]. Sustainable Energy & Fuels, 2022, 6: 121-127. [17] GU X, WANG B, PANG Y, et al. Crown ether-based covalent organic frameworks for CO2 fixation [J]. New Journal of Chemistry, 2023, 47: 2040-2044. [18] LIU X Y, YANG Y Y, CHEN M, et al. High-surface-area metalloporphyrin-based porous ionic polymers by the direct condensation strategy for enhanced CO2 capture and catalytic conversion into cyclic carbonates [J]. ACS Applied Materials & Interfaces, 2023, 15: 1085-1096. [19] LIU X Y, CHEN M, XU W, et al. Potassium-ion-bound porous organic polymers having crown ether struts enable cooperative conversion of CO2 to cyclic carbonates under mild conditions[EB/OL]. Journal of Polymer Science, 2022. https://doi.org/10.1002/pol.20220638. [20] CHEN Y J, LUO R C, XU Q H, et al. State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates at ambient conditions [J]. ChemCatChem, 2017, 9: 767-773. [21] LI Q S, YANG H, LI M Q, et al. Highly efficient solvent-free conversion of CO2 into cyclic carbonates by acrylamide-KI [J]. Industrial & Engineering Chemistry Research, 2020, 59: 8136-8144. [22] CHEN W, ZHONG L X, PENG X W, et al. Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse-an agricultural waste [J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 147-152. [23] KANEKO S, SHIRAKAWA S. Potassium iodide-tetraethylene glycol complex as a practical catalyst for CO2 fixation reactions with epoxides under mild conditions [J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 2836-2840. [24] HAO Y J, YAN X L, LIU X H, et al. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: a combined experimental and theoretical study [J]. Journal of CO2 Utilization, 2022, 56: 101867. [25] SHAIKH R R, PORNPRAPROM S, D'ELIA V. Catalytic strategies for the cycloaddition of pure, diluted and waste CO2 to epoxides under ambient conditions [J]. ACS Catalysis, 2017, 8: 419-450. [26] LUO R C, CHEN M, LIU X Y, et al. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites [J]. Journal of Materials Chemistry A, 2020, 8: 18408-18424. |
[1] | Liang Yue-wei, Liu Li-ru, Qi Rong-hui, Huang Yu, Li Zhi-sheng. A Performance Study of Membrane Liquid Desiccant Air Conditioning System and Carbon Dioxide Transcritical Cycle Heat Pump Integrated System [J]. Journal of Guangdong University of Technology, 2018, 35(01): 61-66. |
[2] | Cheng Tian, Liu Li-ru, Wang Zhang-yuan, Wang Xiao-xia, Ding Ze-zhi. Simulation Analysis of Heat Pump System in CO2 TranscriticalCycle Applied to Temperature and Humidity Independent Control [J]. Journal of Guangdong University of Technology, 2017, 34(01): 40-44. |
[3] | YU Feng-Ling. An Analysis of the Influential Factors of CO2 Emission Based on Coefficient of Variation and GAHP [J]. Journal of Guangdong University of Technology, 2016, 33(04): 89-94. |
|