Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (04): 14-25.doi: 10.12052/gdutxb.230134
• Feature Article • Previous Articles
Shi Jian-chang1,2, Xiao Xiao-lan1,2, Li Hao1, Feng Fa-hui1, Chen Zhi-jian1, Ou Sen-rong1, Chen Ke3
CLC Number:
[1] 谭久彬. 超精密测量是支撑光刻机技术发展的基石[J]. 仪器仪表学报, 2023, 44(3): 1-7. TAN J B. Ultra-precision measurement: the cornerstone of the lithography development [J]. Chinese Journal of Scientific Instrument, 2023, 44(3): 1-7. [2] 张威, 肖渊, 张津瑞, 等. 压电式微滴喷头电源驱动系统设计与实现[J]. 西安工程大学学报, 2019, 33(3): 326-331. ZHANG W, XIAO Y, ZHANG J R, et al. Design and imple- mentation of driven system for piezoelectric droplet sprinkler [J]. Journal of Xi'an Polytechnic University, 2019, 33(3): 326-331. [3] DENG J, LIU S H, LIU Y X, et al. A 2-DOF needle insertion device using inertial piezoelectric actuator [J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3918-3927. [4] 刘军. 用于航天控制力矩陀螺的行波型超声电机技术研究[D]. 南京: 南京航空航天大学, 2020. [5] HANGYEOL B, ABDUL M K, YOUNGSHIK K. A bidirectional rotating actuator by using a single shape memory alloy wire in adouble bend shape [J]. Sensors and Actuators: A. Physical, 2023, 360: 114526. [6] AI K E, RAZZAGHI P, HURMUZLU Y. Feedback control of millimeter scale pivot walkers using magnetic actuation [J]. Robotics and Autonomous System, 2023, 168: 104496. [7] 李锐. 基于迟滞环对称性的压电陶瓷迟滞补偿算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [8] 彭国祥. 压电驱动器输出力迟滞效应的建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [9] GAN J Q, ZHANG X M. A review of nonlinear hysteresis modeling and control of piezoelectric actuators [J]. AIP Advances, 2019, 9: 040702. [10] 李泽琨. 压电陶瓷作动器迟滞非线性建模与补偿控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. [11] 于志亮. 压电陶瓷执行器迟滞补偿与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [12] 徐瑞瑞. 基于Bouc-Wen模型的压电陶瓷驱动的运动平台迟滞建模与控制研究[D]. 武汉: 武汉工程大学, 2022. [13] 甘金强. 微位移平台压电陶瓷驱动系统非线性建模与控制方法研究[D]. 广州: 华南理工大学, 2017. [14] LIU Y F, DU D S, QI N M, et al. A distributed parameter Maxwell-slip model for the hysteresis in piezoelectric actuators [J]. IEEE Transactions on Industrial Electronics, 2018, 66(9): 7150-7158. [15] XIE S B, NI C R, DUAN H Y, et al. Hybrid model based on the Maxwell-Slip model and a support vector machine for hysteresis in piezoelectric actuators[C] //2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) . Boston: IEEE, 2020: 36-41. [16] 段建东, 雷阳, 李浩, 等. 铁磁元件J-A模型的研究进展与趋势[J]. 高压电器, 2020, 56(12): 16-23. DUAN J D, LEI Y, LI H, et al. Review of ferromagnetic components J-A models [J]. High Voltage Apparatus, 2020, 56(12): 16-23. [17] SAVOIE M, SHAN J J. Monte carlo study of Jiles-Atherton parameters on hysteresis area and remnant displacement[C]//2022 IEEE 31st International Symposium on Industrial Electronics (ISI E) . Anchorage: IEEE, 2022: 1017-1022. [18] ZHANG B, GUPTA B, DUCHARNE B, et al. Dynamic magneticscalar hysteresis lump model based on Jiles-Atherton quasistatichysteresis model extended with dynamic fractional derivativecontribution [J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5. [19] 明敏. 压电微动平台迟滞补偿与运动控制研究[D]. 武汉: 武汉大学, 2021. [20] 严秀权, 吴洪涛, 李耀, 等. 压电作动器的支持向量机迟滞模型[J]. 仪器仪表学报, 2018, 39(9): 228-235. YAN X Q, WU H T, LI Y, et al. Support vector machine-based hystersis model of piezoelectric actuator [J]. Chinese Journal of Scientific Instrument, 2018, 39(9): 228-235. [21] IKHOUANE F. A survey of the hysteretic Duhem model [J]. Archives of Computational Methods in Engineering, 2018, 25(4): 965-1002. [22] 孙涛, 李国平, 孙浩益. 基于Duhem模型和逆模型的压电执行器精密定位及控制[J]. 宁波大学学报(理工版), 2017, 30(1): 13-17. SUN T, LI G P, SUN H Y. Accurate positioning and control of piezoelectric actuator based on Duhem model and inverse model [J]. Journal of Ningbo University (NSEE), 2017, 30(1): 13-17. [23] 贺一丹, 王贞艳, 何延超, 等. 压电陶瓷作动器的改进Duhem迟滞模型[J]. 压电与声光, 2021, 43(3): 431-434. HE Y D, WANG Z Y, HE Y C, et al. Improved Duhem hysteresis modeling of piezoelctric actuators [J]. Piezoelectrics & Acoustooptics, 2021, 43(3): 431-434. [24] 高源蓬, 张泉, 李清灵, 等. 压电陶瓷执行器迟滞非线性补偿与最优控制[J]. 仪器仪表学报, 2022, 43(8): 163-172. GAO Y P, ZHANG Q, LI Q L, et al. Hysteresis nonlinear compensation and optimal control of piezoelectric actuators [J]. Chinese Journal of Science Instrument, 2022, 43(8): 163-172. [25] SU C Y, STEPANENKO Y, SVONODA J, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis [J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2427-2432. [26] ZHOU J, WEN C Y, ZHANG Y. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis [J]. IEEE Transactions on Automatic Control, 2004, 49(10): 1751-1759. [27] 杨晓京, 胡俊文, 李庭树. 压电微定位台的率相关动态迟滞建模及参数辨识[J]. 光学精密工程, 2019, 27(3): 610-618. YANG X J, HU J W, LI T S. Rate-dependent dynamic hysteresismodeling of piezoelectric micro platform and its parameter identification [J]. Optics and Precision Engineering, 2019, 27(3): 610-618. [28] CHEN Y Y, WANG Y , DONG Q, et al. Robust adaptive back-stepping control for nonlinear systems with unknown backlash-like hysteresis[C] //2021 IEEE International Conference on Mechatronics and Automation (ICMA) . Takamatsu: IEEE, 2021: 554-559. [29] LI Z, LI Z K, XU H Z, et al. Development of a butterfly fractional-order backlash-like hysteresis model for dielectric elastomer actuators [J]. IEEE Transactions on Industrial Electronics, 2022, 70(2): 1794-1801. [30] WEN Y K. Method for random vibration of hysteretic system [J]. Journal of the Engineering Mechanics Division, 1976, 102(2): 249-263. [31] WANG D H, ZHU W. A phenomenological model for pre- stressed piezoelectric ceramic stack actuators [J]. Smart Materials & Structures, 2011, 20(3): 35018. [32] RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators [J]. IEEE Transactions on Automation Science & Engineering, 2010, 8(2): 428-431. [33] ZABLOTSKAYA T Y. Analyzing the classical and extended Bouc-Wen model parameters[C] //2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) . Lipetsk: IEEE, 2020: 576-581. [34] ABOURA F. Modeling and analyzing Bouc-Wen hysteresis model[C] //2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) . Nancy: IEEE, 2019: 1-2. [35] HU J Y, DONG R L, TAN Y H. A new improved Bouc-Wen model of piezoelectric ceramics actuators[C] //2021 40th Chinese Control Conference (CCC) . Shanghai: IEEE, 2021: 1-5. [36] SALEEM A, AL-RATROUT S, MESBAH M. A fitness function for parameters identification of Bouc-Wen hysteresis model for piezoelectric actuators[C] //2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) . Istanbul: IEEE, 2018: 119-123. [37] MINH T V, TUNG T T, CHEN X K. Precision control of piezoelectric actuator using modified Bouc-Wen model[C] //2020 International Conference on Advanced Mechatronic Systems (ICAMS) . Hanoi: IEEE, 2020: 162-167. [38] 赵博文. 压电陶瓷驱动平台的迟滞补偿控制方法研究[D]. 盐城: 盐城工学院, 2023. [39] PREISACH F. Über die magnetische Nachwirkung [J]. Zeitschrift Für Physik, 1935, 94(5): 277-302. [40] MGOLDFARB M, CELANOVIC N. Modeling piezoelectric stack actuators for control of micromanipulation [J]. IEEE Control Systems Magazine, 1997, 17(3): 69-79. [41] 范青武, 张恒, 刘旭东, 等. 基于三线性插值法的Preisach模型及数值实现[J]. 压电与声光, 2018, 40(5): 811-814. FAN Q W, ZHANG H, LIU X D, et al. The Preisach model based on trilinear interpolation method and its numerical implementation [J]. Piezoelectrics & Acoustooptics, 2018, 40(5): 811-814. [42] 武毅男, 方勇纯. 基于Preisach模型的深度学习网络迟滞建模[J]. 控制理论与应用, 2018, 35(6): 723-731. WU Y N, FANG Y C. Hysteresis modeling with deep leaning network based on Preisach model [J]. Control Theory & Application, 2018, 35(6): 723-731. [43] 陈彬, 王斐然, 陈睿, 等. 基于R-L型分数阶导数的动态解析逆Preisach模型[J]. 高压电技术, 2023, 49(9): 3918-3926. CHEN B, WANG F R, CHEN R, et al. Dynamic analytical inverse Preisach model based on R-L fractional derivative [J]. High Voltage Engineering, 2023, 49(9): 3918-3926. [44] MACKI J W, NISTRI P, ZECCA P. Mathematical models for hysteresis [J]. SIAM Review, 1993, 35(1): 94-123. [45] GU G Y, YANG M J, ZHU L M. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii mode [J]. Review of Scientific Instruments, 2012, 83(6): 065106. [46] XIE S, REN G, WANG B. A modified asymmetric generalized Prandtl-Ishlinskii model for characterizing the irregular asymmetrichysteresis of self-made pneumatic muscle actuators [J]. Mechanism and Machine Theory, 2020, 149: 103836. [47] KO Y R, CHUN S, KIM T H. Identification of inverse gen- eralized asymmetric Prandtl-Ishlinskii model for compensation of hysteresis nonlinearities[C] //2017 IEEE Conference on Control Technology and Applications (CCTA) . Maui: IEEE, 2017: 1183- 1188. [48] 钟云, 黄楠, 曾俊海. 压电驱动器迟滞非线性的增强型Prandtl-Ishlinskii模型建模及实验验证[J]. 机电工程技术, 2020, 49(10): 33-35. ZHONG Y, HUANG N, ZENG J H. Enhanced Prandtl-Ishlinskii modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators [J]. Mechanical & Electrical Engineering Technology, 2020, 49(10): 33-35. [49] 张金, 张健滔, 宁艺文, 等. 基于神经网络的压电能量收集器性能预估模型[J]. 振动, 测试与诊断, 2023, 49(1): 172-178. ZHANG J, ZHANG J T, NING Y W, et al. Performance prediction model of piezoelectric energy harvester based on artificial neural network [J]. Journal of Vibration, Measurement & Diagnosis, 2023, 49(1): 172-178. [50] 熊永程, 贾文红, 张丽敏, 等. 基于深度神经网络(DNN) 的压电陶瓷前馈补偿研究[J]. 压电与声光, 2022, 44(1): 35-41. XIONG Y C, JIA W H, ZHANG L M, et al. Research on feedforward compensation of piezoelectric ceramics based on deep neural network [J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 35-41. [51] WANG G, YAO X M, CUI J J, et al. A novel piezoelectric hysteresis modeling method combining LSTM and NARX neural network [J]. Modern Physics Letters B, 2020, 34(28): 1-14. [52] CHENG L, LIU W C, HOU Z G, et al. Neural-network based nonlinear model predictive control for piezoelectric actuators [J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727. [53] ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353. [54] 毛剑琴, 丁海山. 率相关迟滞非线性系统的智能化建模与控制[J]. 中国科学, 2009, 39(3): 289-304. [55] 陈圣鑫. 基于T-S模糊系统的压电执行器建模与控制[D]. 杭州: 浙江理工大学, 2021. [56] 张伟, 毛剑琴. 基于模糊树模型的非线性系统内模控制[J]. 控制理论与应用, 2013(4): 463-468. ZHANG W, MAO J Q. Internal model control for nonlinear system based on fuzzy-tree method [J]. Control Theory & Application, 2013(4): 463-468. [57] LI P Z, ZHANG D F, HU J Y, et al. Hysteresis modelling and feedforward control of piezoelectric actuator based on simplified interval type-2 fuzzy system [J]. Sensor, 2020, 20(9): 2587. [58] YANG L, WANG Q T, XIAO Y Q, et al. Hysteresis modeling of piezoelectric actuators based on a T-S fuzzy model [J]. Electronics, 2022, 11(17): 2786. [59] LIU G W, ÖZER A Ö, WANG M G. Longtime dynamics for a novel piezoelectric beam model with creep and thermo-viscoelasticeffects [J]. Nonlinear Analysis: Real World Application, 2022, 68: 103666. [60] 范伟, 林瑜阳, 李钟慎. 基于BP神经网络的压电陶瓷蠕变预测[J]. 计量学报, 2017, 38(4): 429-434. FAN W, LIN Y Y, LI Z S. Prediction of the creep of piezoelectric ceramic based on BP neural network optimized by genetic algorithm [J]. Acta Metrologica Sinica, 2017, 38(4): 429-434. [61] 温盛军, 李亮, 喻俊, 等. 迟滞与蠕变耦合压电系统的建模及补偿方法[J]. 振动与冲击, 2023, 42(7): 25-37. WEN S J, LI L, YU J, et al. Modeling and compensation method of hysteresis-creep coupled piezoelectric system [J]. Journal of Vibration and Shock, 2023, 42(7): 25-37. [62] 赵学良. 低速大范围下压电执行器动态蠕变特性分析与控制方法研究[D]. 济南: 山东大学, 2016. [63] ZHONG J P, NISHIDA R, SHINSHI T. A digital charge control strategy for reducing the hysteresis in piezoelectric actuators: analysis, design and implementation [J]. Precision Engineering, 2021, 67: 370-382. [64] GAN J Q, ZHANG X M. A review of nonlinear hysteresis modeling and control of piezoelectric actuators [J]. AIP Advance, 2019, 9(4): 1-10. [65] COMSTOCK R H. Charge control of piezoelectric actuators to reduce hysteresis effects: US4263527A[P]. 1981-4-21. [66] 余婷婷. 基于电荷控制法的压电惯性摩擦驱动器的设计及控制研究[D]. 上海: 华东理工大学, 2023. [67] 喻奇志. 基于电荷驱动的压电变形镜控制方法研究[D]. 宁波: 宁波大学, 2019. [68] 王博文, 崔玉国, 谢启芳, 等. 基于率相关迟滞模型的压电微动平台前馈控制[J]. 压电与声光, 2022, 44(6): 898-900. WANG B W, CUI Y G, XIE Q F, et al. Feedforward control of piezoelectric micro-positioning stage based on rate-dependent hysteresis model [J]. Piezoelectric & Acoustooptics, 2022, 44(6): 898-900. [69] 赵建杰. 基于前馈控制算法的快速响应压电陶瓷模型设计[D]. 哈尔滨: 哈尔滨工业大学, 2020. [70] 陈辉. 多维超精密定位系统建模与控制关键技术研究[D]. 南京: 东南大学, 2015. [71] 韩少鹏. 压电陶瓷驱动器多段改进动态PI模型研究与精度控制[D]. 杭州: 杭州电子科技大学, 2019. [72] 郭兴旺. 纳米定位与扫描平台模型辨识与控制算法研究[D]. 沈阳: 沈阳建筑大学, 2016. [73] 于文慧. 二维压电平台迟滞动力学复合建模及其运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. [74] LI W G, YANG Z C, LI K, et al. Hybrid feedback PID-FxLMSalgorithm for active vibration control of cantilever beam with piezoelectric stack actuator [J]. Journal of Sound and Vibration, 2021, 509: 116243. [75] WANG L, ZHAO Y Y, LIU J X, et al. Uncertainty-oriented optimal PID control design framework for piezoelectric structures based on subinterval dimension-wise method (SDWM) and non-probabilistic time-dependent reliability (NTDR) analysis [J]. Journal of Sound and Vibration, 2023, 549: 117588. [76] 杜建周, 陈远晟, 刘绍娜, 等. 基于自适应逆控制的压电驱动电源[J]. 压电与声光, 2022, 44(6): 901-906. DU J Z, CHEN Y S, LIU S N, et al. Research on piezoelectric drive power with adaptive inverse control [J]. Piezoelectric & Acoustooptics, 2022, 44(6): 901-906. [77] 陆奇涛. 自驱动自适应压电步进驱动器的研究[D]. 杭州: 浙江师范大学, 2022. [78] SUN J F, CHEN W K, CHEN X S. Model reference adaptive control with adjustable gain for piezoelectric actuator [J]. European Journal of control, 2022, 67: 100712. [79] SHI B C, SHI R, WANG F J. Design of an adaptive feedfor- ward feedback combined control for piezoelectric actuated micro positioning stage[J]. Precision Engineering, 2022, 78: 199-205. [80] 张毅. 压电作动器的非线性建模及控制方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. [81] DING Z A, YANG Z J, CHEN C H, et al. Improved sliding mode dynamic matrix control strategy: application on spindle loading and precision measuring device based on piezoelectric actuator [J]. Mechanical Systems and Signal Processing, 2022, 167: 108543. [82] SHIEH H J, CHIU Y J, CHEN Y T. Optimal PID control system of a piezoelectric micropositioner[C] //2008 IEEE/SCIE International Symposium on System Integration, Nagoya: IEEE, 2008: 1-5. [83] XU R, WANG Z S, ZHOU M L, et al. A robust fractional-order sliding mode control technique for piezoelectric nanopositioning stage in Trajectory-tracking application [J]. Sensors and Actuators: A. Physical, 2023, 363: 114711. [84] CHANG K M, CHEN J M, LIU Y T. Nonlinear sliding mode control for piezoelectric tool holder with bellow-type hydraulic displacement amplification mechanism [J]. Sensors and Actuators: A. Physical, 2023, 361: 114543. [85] ZHANG C, YU Y W, ZHANG X Y, et al. Predefined-time adaptive control of a piezoelectric-driven motion system with time-varying output constraint [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(7): 2605-2609. [86] WU Y N, CHEN H, SUN N, et al. Neural network based adaptive control for a piezoelectric actuator with model uncertainty and unknown external disturbance [J]. International Journal of Robust and Nonlinear Control, 2023, 33(3): 2251-227. [87] ZHANG Z G, DONG Y K, YU S, et al. Model-free adaptive positioning control of the bidirectional stick-slip piezoelectric actuator with coupled asymmetric flexure-hinge mechanisms [J]. Sensors, 2023, 23(18): 7795. |
No related articles found! |
|