Journal of Guangdong University of Technology
Previous Articles Next Articles
Lin Hao, Chen Ping-hua
CLC Number:
[1] HE Z, LIU W, GUO W, et al. A survey on user behavior modeling in recommender systems[C]//International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2023: 6656-6664. [2] YAP G E, LI X L, YU P S. Effective next-items recommendation via personalized sequential pattern mining[C]//Database Systems for Advanced Applications. Busan: Springer Berlin Heidelberg, 2012: 48-64. [3] LUDEWIG M, JANNACH D. Evaluation of session-based recommendation algorithms [J]. User Modeling and User-Adapted Interaction, 2018, 28(4): 331-390. [4] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//ACM on Conference on Information and Knowledge Management. New York: Association for Computing Machinery, 2017: 1419-1428. [5] GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods and directions [J]. ACM Transactions on Recommender Systems, 2021, 1(3): 1-51. [6] 林穗, 郑志豪. 基于关联规则的客户行为建模与商品推荐研究[J]. 广东工业大学学报, 2018, 35(3): 90-94. LIN S, ZHENG Z H. A research of a recommender system-based on customer behavior modeling by mining association rules [J]. Journal of Guangdong University of Technology, 2018, 35(3): 90-94. [7] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEMEL. Factorizing personalized markov chains for next-basket recommendation[C]//World Wide Web Conference. New York: Association for Computing Machinery, 2010: 811-820 [8] WU X, LIU Q, CHEN E, et al. Personalized next-song recommendation in online karaokes[C]//ACM Conference on Recommender Systems. New York: Association for Computing Machinery, 2013: 137-140. [9] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//International Conference on Learning Representations. San Juan: ICLR, 2016: 1-10. [10] CEN Y, ZHANG J, ZOU X, et al. Controllable multi-interest framework for recommendation[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: Association for Computing Machinery, 2020: 2942-2951. [11] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 346-353. [12] WANG M, REN P, MEI L, et al. A collaborative session-based recommendation approach with parallel memory modules[C]//ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2019: 345-354. [13] 杨显鹏, 李晓楠, 李冠宇. 基于超图卷积网络的用户微行为会话推荐[J]. 计算机工程与应用, 2023, 59(16): 108-114. YANG X P, LI X N, LI G Y. Hypergraph convolutional networks for user micro-behavior session-based recommendation [J]. Computer Engineering and Applications., 2023, 59(16): 108-114. [14] LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//ACM Web Conference. New York: Association for Computing Machinery, 2022: 2320-2329. [15] XIA X, YIN H, YU J, et al. Self-supervised graph co-training for session-based recommendation[C]//ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2021: 2180-2190. [16] WANG X, JIN H, ZHANG A, et al. Disentangled graph collaborative filtering[C]//ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2020: 1001-1010. [17] SZÉKELY G J, RIZZO M L, BAKIROV N K. Measuring and testing dependence by correlation of distances [J]. Annals of Statistics, 2007, 35(6): 2769-2794. [18] ZHENG Y, GAO C, HE X, et al. Price-aware recommendation with graph convolutional networks[C]//IEEE 36th International Conference on Data Engineering (ICDE) . Online: IEEE, 2020: 133-144. [19] ZHANG X, XU B, YANG L, et al. Price does matter! modeling price and interest preferences in session-based recommendation[C]//ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2022: 1684-1693. [20] GREENSTEIN-MESSICA A, ROKACH L. Personal price aware multi-seller recommender system: evidence from eBay [J]. Knowledge-Based Systems, 2018, 150: 14-26. [21] ANH P H, BACH N X, PHUONG T M. Session-based recommendation with self-attention[C]//International Symposium on Information and Communication Technology. New York: Association for Computing Machinery, 2019: 1-8. [22] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2020: 169-178. [23] LU Y, ZENG J, ZHANG J, et al. Attention calibration for transformer in neural machine translation[C]//Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2021: 1288-1298. [24] XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]//AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021, 35(5) : 4503-4511. [25] FAN Z, LIU Z, WANG Y, et al. Sequential recommendation via stochastic self-attention[C]//Proceedings of the ACM Web Conference. New York: Association for Computing Machinery, 2022: 2036-2047. |
[1] | Zheng Xia-cong, Cheng Liang-lun, Huang Guo-heng, Wang Jing-chao. Text Detection in Natural Scenes Embedded Topological Feature [J]. Journal of Guangdong University of Technology, 2024, 41(03): 102-109.doi: 10.12052/gdutxb.230212 |
|