Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (04): 61-69.doi: 10.12052/gdutxb.240005
• Information and Communication Engineering • Previous Articles Next Articles
Xie Zheng-hao1,2, Lai Jian-xin1,2, Zhuang Xiao-chong1,3, Jiang Li1,2
CLC Number:
[1] GERACI G, RODRIGUEZ A, AZARI M, et al. What will the future of UAV cellular communications be? A flight from 5G to 6G [J]. IEEE Communications Survey & Tutorials, 2022, 24(3): 1304-1335. [2] JIANG L, CHEN B, XIE S L, et al. Incentivizing resource cooperation for blockchain empowered wireless power transfer in UAV networks [J]. IEEE Transactions on Vehicular Technologies, 2020, 69(12): 15828-15841. [3] HAZRA K, SHAH V K, ROY S, et al. Exploring biological robustness for reliable multi-UAV networks [J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 2776-2788. [4] TRIPATHY A, TRIPATHY K, MOHAPATRA G, et al. WeDoShare: a ridesharing framework in transportation cyber-physical system for sustainable mobility in smart cities [J]. IEEE Consumer Electronics Magazine, 2020, 9(4): 41-48. [5] HU C H, FAN W C, ZENG E, et al. Digital twin-assisted real-time traffic data prediction method for 5G-enabled Internet of Vehicles [J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2811-2819. [6] WANG Z R, GUPTA R, HAN K, et al. Mobility digital twin: concept, architecture, case study, and future challenges [J]. IEEE Internet of Things Journal, 2022, 9(18): 17452-17467. [7] KONECNY J, MCMAHAN H B, RAMAGE D. Federated optimization: distributed machine learning for on-device intelligence[J]. arXiv: 1610.02527(2016-10-8) [2023-10-11]. https://arxiv.org/abs/1610.02527. [8] KHAN L U, SAAD W, HAN Z, et al. Federated learning for Internet of things: recent advances, taxonomy, and open challenges [J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1759-1799. [9] 蒋丽, 谢胜利, 张彦. 面向6G网络的联邦学习资源协作激励机制设计[J]. 广东工业大学学报, 2021, 38(6): 47-52,83. JIANG L, XIE S L, ZHANG Y. Incentivizing resource cooperation for federated learning in 6G networks [J]. Journal of Guangdong University of Technology, 2021, 38(6): 47-52,83. [10] SONG Y, WANG T, WU Y, et al. Non-orthogonal multiple access assisted federated learning for UAV swarms: an approach of latency minimization[C]//2021 International Wireless Communications and Mobile Computing (IWCMC). Harbin, China: IEEE, 2021: 1123-1128. [11] CHENG Z, XIA X, MIN M, et al. Auction-promoted trading for multiple federated learning services in UAV-aided networks [J]. IEEE Transactions on Vehicular Technology, 2022, 70(10): 10960-10974. [12] SUN W, XU N, WANG L, et al. Dynamic digital twin and federated learning with incentives for air-ground network [J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 321-333. [13] LI B, LIU Y F, TAN L, et al. Digital twin assisted task offloading for aerial edge computing and networks [J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10863-10877. [14] CHEN X , CHEN T, ZHAO Z , et al. Resource awareness in unmanned aerial vehicle-assisted mobile-edge computing system[C]//2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium: IEEE, 2020. [15] RYAN L, YI W, AVIV T, et al. Multi-agent actor-critic for mixed cooperative- competitive environments[J]. arXiv: 1706.02275(2017-6-7) [2023-10-12]. https://arxiv.org/abs/1706.02275. [16] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08)[2023-12-28]. http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf. |
[1] | Jiang Li, Xie Sheng-li, Zhang Yan. Incentivizing Resource Cooperation for Federated Learning in 6G Networks [J]. Journal of Guangdong University of Technology, 2021, 38(06): 47-52,83.doi: 10.12052/gdutxb.240005 |
|