Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (05): 125-128.doi: 10.12052/gdutxb.240013
• Differential Equation and Its Application • Previous Articles
Xu Lin, Xie Qi-lin
CLC Number:
[1] LIONS J L. On some questions in boundary value problems of mathematical physics [J]. North Holland Mathematics Studies, 1978, 30: 284-346. [2] ALVES C O, COTTRA F, MA T F. Positive solutions for a quasilinear elliptic equation of kirchhoff type [J]. Computers Mathematics with Applications, 2005, 49(1): 85-93. [3] LEI C Y, LIAO J F, TANG C L. Multiple positive solutions for kirchhoff type of problems with singularity and critical exponents [J]. Journal of Mathematical Analysis and Applications, 2015, 421(1): 521-538. [4] SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities[J]. Journal of Differential Equations. 2020, 269(9) : 6941-6987. [5] SOAVE N. Normalized ground states for the NLS equation with combined nonlinearities: the sobolev critical case [J]. Journal of Functional Analysis, 2020, 279(6): 1086-1101. [6] LI G B, LUO X, YANG T. Normalized solutions to a class of kirchhoff equations with sobolev critical exponent [J]. Annales Fennici Mathematici, 2022, 47: 895-925. [7] HU J Q, MAO A M. Normalized solutions to the kirchhoff equation with a perturbation term [J]. Differential and Integral Equations, 2023, 36(3/4): 289-312. [8] CARRIAO P C, MIYAGAKI O H, VICENTE A. Normalized solutions of kirchhoff equations with critical and subcritical nonlinearities: the defocusing case [J]. Partial Differential Equations and Applications, 2022, 3(5): 64. [9] BERNARD D. Introduction to the calculus of variations[M]. Switzerland :World Scientific Publishing Company , 2014. [10] WILLEM M. Minimax theorems[M]. Boston: Springer Science Business Media, 1997. [11] WEINSTEIN M I. Nonlinear schrödinger equations and sharp interpolation estimates [J]. Communications in Mathematical Physics, 1982, 87: 567-576. [12] STUART C A. Bifurcation from the continuous spectrum in the L2 theory of elliptic equations on RN[J]. Recent Methods in Nonlinear Analysis and Applications, Liguori, Napoli, 1981, 231-300. [13] LIONS P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 [J]. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 1984, 1(2): 109-145. |
[1] | Hong Yu-min, Yang Li-ping. Common Fixed Point Theorems in Cone Metric Spaces over Banach Algebras [J]. Journal of Guangdong University of Technology, 2021, 38(01): 75-81.doi: 10.12052/gdutxb.240013 |
[2] | Liu Yan-yan, Yang Li-ping. Common Fixed Point Theorems for c-distances in Cone Metric Spaces [J]. Journal of Guangdong University of Technology, 2019, 36(05): 43-47.doi: 10.12052/gdutxb.240013 |
|