Journal of Guangdong University of Technology ›› 2025, Vol. 42 ›› Issue (1): 79-86.doi: 10.12052/gdutxb.240067
• Smart Medical • Previous Articles
Wen Chaoyao, Wang Ziqi, Xiang Chuyang, Liu Mingjie, Tan Guoxin
CLC Number:
[1] BEK J, GOWEN E, VOGT S, et al. Observation and imitation of object-directed hand movements in Parkinson’s disease[J]. Scientific Reports, 2023, 13(1): 18749. [2] ISLAM A, ALCOCK L, NAZARPOUR K, et al. Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: a systematic review[J]. npj Parkinson’s Disease, 2020, 6(1): 22. [3] FADIL R, HUETHER A X A, SADEGHIAN F, et al. The effect of skeletal muscle-pump on blood pressure and postural control in Parkinson’s disease[J]. Cardiovascular Engineering and Technology, 2023, 14(6): 755-773. [4] HUANG Y Z, CHANG F Y, LIU W C, et al. Fatigue and muscle strength involving walking speed in Parkinson’s disease: insights for developing rehabilitation strategy for PD[J]. Neural Plasticity, 2017, 2017: 1-9. [5] VEDADGHAVAMI A, MINOOEI F, MOHAMMADI M H, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications[J]. Acta Biomaterialia, 2017, 62: 42-63. [6] NING X J, HUANG J N, A Y H, et al. Research advances in mechanical properties and applications of dual network hydrogels[J]. International Journal of Molecular Sciences, 2022, 23(24): 15757. [7] HUANG L, ZENG R, XU J, et al. Point-of-care immunoassay based on a multipixel dual-channel pressure sensor array with visual sensing capability of full-color switching and reliable electrical signals[J]. Analytical Chemistry, 2022, 94(38): 13278-13286. [8] XUE X, HU Y, DENG Y, et al. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering[J]. Advanced Functional Materials, 2021, 31(19): 2009432. [9] LONG R, HUI C Y. Fracture toughness of hydrogels: measurement and interpretation[J]. Soft Matter, 2016, 12(39): 8069-8086. [10] FU J, IN HET PANHUIS M. Hydrogel properties and applications[J]. Journal of Materials Chemistry B, 2019, 7(10): 1523-1525. [11] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. [12] WANG Y, XIE Y, XIE X, et al. Compliant and robust tissue-like hydrogels via ferric ion-induced of hierarchical structure[J]. Advanced Functional Materials, 2023, 33(12): 2210224. [13] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training[J]. Science, 2019, 363(6426): 504-508. [14] YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019, 122: 1279-1289. [15] WU L, KANG Y, SHI X, et al. Natural-wood-inspired ultrastrong anisotropic hybrid hydrogels targeting artificial tendons or ligaments[J]. ACS Nano, 2023, 17(14): 13522-13532. [16] WANG L, XU T, ZHANG X. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021, 134: 116130. [17] CUI J, CHEN J, NI Z, et al. High-sensitivity flexible sensor based on biomimetic strain-stiffening hydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47148-47156. [18] ALEID S, WU M, LI R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting[J]. ACS Materials Letters, 2022, 4(3): 511-520. [19] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599. [20] CUI W, ZHENG Y, ZHU R, et al. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out[J]. Advanced Functional Materials, 2022, 32(39): 2204823. [21] YE Z, CHI T, EVANS C J, et al. Implications of Supramolecular crosslinking on hydrogel toughening by directional freeze-casting and salting-out [J]. Advanced Functional Materials, 2024 : 2402613. [22] FENG X, XING C, WANG C, et al. Degradable, anti-swelling, high-strength cellulosic hydrogels via salting-out and ionic coordination[J]. International Journal of Biological Macromolecules, 2024, 267: 131536. [23] WU S, HUA M, ALSAID Y, et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect[J]. Advanced Materials, 2021, 33(11): 2007829. [24] ZHANG L, WANG K, WENG S, et al. Super strong and tough anisotropic hydrogels through synergy of directional freeze-casting, metal complexation and salting out[J]. Chemical Engineering Journal, 2023, 463: 142414. [25] DONG X, GUO X, LIU Q, et al. Strong and tough conductive organo-hydrogels via freeze-casting assisted solution substitution[J]. Advanced Functional Materials, 2022, 32(31): 2203610. [26] XIANG S. Hierarchical structural double network hydrogel with high strength, toughness, and good recoverability[J]. New Journal of Chemistry, 2017, 41(23): 14397-14402. [27] REN J, DAI Q, ZHONG H, et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength[J]. Cellulose, 2018, 25(8): 4537-4549. [28] WANG S, LI K, ZHOU Q. High strength and low swelling composite hydrogels from gelatin and delignified wood[J]. Scientific Reports, 2020, 10(1): 17842. [29] WU L, MAO G, NIAN G, et al. Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression[J]. Soft Matter, 2018, 14(21): 4355-4363. [30] HARRASS K, KRÜGER R, MÖLLER M, et al. Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading[J]. Soft Matter, 2013, 9(10): 2869. [31] AWASTHI S, GAUR J K, PANDEY S K, et al. High-strength, strongly bonded nanocomposite hydrogels for cartilage repair[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24505-24523. [32] KANG B, LANG Q, TU J, et al. Preparation and properties of double network hydrogel with high compressive strength[J]. Polymers, 2022, 14(5): 966-966. [33] FU R. A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring[J]. Nano Energy, 2023, 114: 108617. [34] YU G, ZHANG Y, WANG Q, et al. Wearable and flexible hydrogels for strain sensing and wound electrical stimulation[J]. Industrial & Engineering Chemistry Research, 2023, 62(13): 5468-5481. |
[1] | Zhang Hai-bing1,Tian Tian2,Wen Xu3. A Study of Electric Fields Around Composite Insulators under -Polluted and Wet Conditions [J]. Journal of Guangdong University of Technology, 2012, 29(2): 58-62.doi: 10.12052/gdutxb.240067 |
[2] | ZHANG Li, KE Xiu-Fang. The Efect of Doping on the Thermal Conductivity of Phase Change Materials [J]. Journal of Guangdong University of Technology, 2010, 27(4): 39-41.doi: 10.12052/gdutxb.240067 |
[3] | TAN Guo-Xin1 , RUAN Xiong-Jie1 , NING Cheng-Yun2 , HUO Yan-Ping1 , CHEN Rong1 , LIAO Jing-Wen1. A Study of Swelling Properties and Volume Phase Transition of PEGDA/NIPAM Copolymer Hydrogels [J]. Journal of Guangdong University of Technology, 2010, 27(3): 5-8.doi: 10.12052/gdutxb.240067 |
[4] | Lai Zi-ni1,2,Cui Ying-de3,Liang Can-qiang2,Wang Shuai2. Preparation of PVA-SA-PLA Composite Hydrogels and the Diffusibility Performance for NH+4 [J]. Journal of Guangdong University of Technology, 2009, 26(3): 1-4.doi: 10.12052/gdutxb.240067 |
[5] | Luo Jie1,Tang Wen-jun2. Influence of PEDOT with Different Conductivity on the Performance of Polymer Photovoltaic Cells [J]. Journal of Guangdong University of Technology, 2008, 25(3): 6-9.doi: 10.12052/gdutxb.240067 |
[6] | WU Wei-liang,WU Guo-jie,LAI Guo-zhu. Studies on the Mechanical Properties of Polyvinyl Alcohol-Chitosan Hydrogel [J]. Journal of Guangdong University of Technology, 2006, 23(4): 105-109.doi: 10.12052/gdutxb.240067 |
[7] | WU Guo-jie~(1),WU Wei-liang ~(1),LI Jin-man~(1),ZHOU Jia-hua~(1),CUI Ying-de~(2). The Effects of the Preparation Conditions of Polyvinyl Alcohol-Chitosan Hydrogel on Its Swelling Ration [J]. Journal of Guangdong University of Technology, 2006, 23(3): 16-20.doi: 10.12052/gdutxb.240067 |
[8] | WU Guo-jie~1,LI Jin-man~1,WANG Fu-hua~1,CUI Ying-de~2,YI Guo-bin~1 . Study on Swelling Properties of Polyether-Chitosan Hydrogel [J]. Journal of Guangdong University of Technology, 2005, 22(4): 1-5.doi: 10.12052/gdutxb.240067 |
[9] | CAI Li-bin~1,LIU Zheng-tang~1,CUI Ying-de~2,LI Shao-qiu~3,ZHANG xiao-hong~1 . Study on Synthesis and Oxygen Permeability of Copolymer Hydrogel Containing Silicone for Contact Lens [J]. Journal of Guangdong University of Technology, 2005, 22(3): 7-10.doi: 10.12052/gdutxb.240067 |
[10] | LI Lin-sheng, CHEN Xian-chao, LI Wo-guang, YU Ye-qiu. A New Method of Directional Solidification of In-situ Cu-Cr Alloy [J]. Journal of Guangdong University of Technology, 2005, 22(2): 12-15.doi: 10.12052/gdutxb.240067 |
|