Journal of Guangdong University of Technology ›› 1999, Vol. 16 ›› Issue (4): 5-9.

• Comprehensive Studies • Previous Articles     Next Articles

A Posteriori Parameter Choice Strategies for Nonlinear Illposed Problems with Perturbed Operators and Noisy Data

  

  1. (1 Dept. of Computer Science;2.Dept. of Graduate Student, GDUT, Guangzhou 510090,China; 3.Dept. of Computer Science, Jinan University, Guangzhou 510632,China)
  • Online:1999-11-12 Published:1999-11-12
[1] 凌捷.  具有双扰动数据非线性算子方程解的误差[J]. 中山大学学报(自然科学版). 1998(05)

[1] Krein SG,Petunin JI.Scalesof Banach spaces. Russian Mathematical Surveys . 1966

[2] Neubauer A.ATikhonovregularizationfornonlinearill- posed problemsin Hilbertscales. Applicable Analysis . 1992

[3] Natterer F.Error boundsfor Tikhonovregularizationin Hilbertscales. Appl.Analysis . 1984

[4] SchroterT,Tautenhahn U.Errorestimatesfor Tikhonovregularizationin Hilbertscales. NumerFunct AnalOptimiz . 1994

[5] KohlerJ,Tautenhahn U.Error bound for regularized solutions of nonlinearill- posed problems. Journal ofinverseandill- posed problems . 1995

[6] Tautenhahn U.Error estimatesforregularized solutions ofnonlinearill- posed problems. Inverse Problems . 1994

[7] Neubauer A.An a posteriori parameter choicefor Tikhonov regularization in Hilbertscalesleadingto optimalconvergence rates. SIAMJ.Numer.Anal . 1988
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!