Journal of Guangdong University of Technology ›› 2007, Vol. 24 ›› Issue (2): 27-32.

• Comprehensive Studies • Previous Articles     Next Articles

Exact Solutions for Wick-type Stochastic Generalized kdv Equation

  

  1. (1.Guangdong Technical College of Water Resources and Electric Engineering,Guangzhou 510635,China;2.Department of Applied Mathematics,Tsinghua University,Beijing 100084,China)
  • Online:2007-07-02 Published:2007-07-02

Abstract: In the paper,by using Hermite tranformation,Wicktype stochastic generalized kdv equation is reduce to stochastic coefficient equation,then some stochastic exact solutions are obtained via generalized expansion method and Hermite inverse transformation.

Key words: Wick-type stochastic generalized kdv equation; stochastic exact solution; White noise; generalized expansion method; Hermite transformation;

[1] Printerms J.The stcochastic Korteweg-de Veries Equationin L(R2). Differen Equation . 1999

[2] Wabati M,Akustu Y.Stochastic Korteweg-de Veries Equa-tion with and without Damping. Journal of the Physical Society of Japan . 1984

[3] Konotop V V,Vzquezl L.Nonlinear random waves. . 1994

[4] Xie Y C,Chen B.Exact solutions for generalized stochas-tic Wick-type KDV-Mkdv equations. Chaos Soli-tons&Fractals . 2005

[5] Xie Y C.Exact solutions of the Wick-type stochastic Ka-dom tsev-Petviashvili equations. Physics Letters A . 2004

[6] Debussche A,Printems J.Nemerical simulation of thestcochastic Korteweg-de Veries Equatiojn. Physica D Nonlinear Phenomena . 1999

[7] Ablowitz M J,Clarkson P A,Solitons.Nonlinear EvolutionEquation and Inverse Scattering. . 1991

[8] de Bouard A,Debussche A.On the stcochastic Korteweg-de veries equation. Journal of Functional Analysis . 1998

[9] Chen Y,Wang Q,Li B.The stochastic solition-like solu-tions of stochastic Kdv equations. Chaos,Soltions&Fractals . 2005

[10] de Bouard A,Debussche A.White noiste driven Korteweg-de Veries Equation. Journal of Functional Analysis . 1999

[11] Holden H,ΦsendalB,UbΦeJ,Zhang T.Stochastic paritialdifferential equations. . 1996

[12] Xie Y C.Exact solutions for stochastic dv quations. PhysLetter A . 2003

[13] Xie Y C.Exact solutions for stochastic mKdv equations. Chaos,Solitons&Fractals . 2004

[14] 李德生,张鸿庆.  改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解[J]. 物理学报. 2003(07)

[15] 张解放,陈芳跃.  截断展开方法和广义变系数KdV方程新的精确类孤子解[J]. 物理学报. 2001(09)

[16] 闫振亚.  组合KdV-mKdV方程的函数变换和精确解析解[J]. 烟台大学学报(自然科学与工程版). 2001(02)

[17] 闫振亚,张鸿庆.  具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解[J]. 物理学报. 1999(11)

[18] 楼森岳,阮航宇.  变系数KdV方程和变系数MKdV方程的无穷多守恒律[J]. 物理学报. 1992(02)

[19] Arnaud Debussche,Jacques Printems.  Effect of a Localized Random Forcing Term on the Korteweg-De Vries Equation[J] ,2001

[20] Liu Xiqiang.  Exact solutions of the variable coefficient kdV and sg type equations[J] ,1998
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!