Journal of Guangdong University of Technology ›› 2007, Vol. 24 ›› Issue (2): 27-32.
• Comprehensive Studies • Previous Articles Next Articles
[1] Printerms J.The stcochastic Korteweg-de Veries Equationin L(R2). Differen Equation . 1999[2] Wabati M,Akustu Y.Stochastic Korteweg-de Veries Equa-tion with and without Damping. Journal of the Physical Society of Japan . 1984[3] Konotop V V,Vzquezl L.Nonlinear random waves. . 1994[4] Xie Y C,Chen B.Exact solutions for generalized stochas-tic Wick-type KDV-Mkdv equations. Chaos Soli-tons&Fractals . 2005[5] Xie Y C.Exact solutions of the Wick-type stochastic Ka-dom tsev-Petviashvili equations. Physics Letters A . 2004[6] Debussche A,Printems J.Nemerical simulation of thestcochastic Korteweg-de Veries Equatiojn. Physica D Nonlinear Phenomena . 1999[7] Ablowitz M J,Clarkson P A,Solitons.Nonlinear EvolutionEquation and Inverse Scattering. . 1991[8] de Bouard A,Debussche A.On the stcochastic Korteweg-de veries equation. Journal of Functional Analysis . 1998[9] Chen Y,Wang Q,Li B.The stochastic solition-like solu-tions of stochastic Kdv equations. Chaos,Soltions&Fractals . 2005[10] de Bouard A,Debussche A.White noiste driven Korteweg-de Veries Equation. Journal of Functional Analysis . 1999[11] Holden H,ΦsendalB,UbΦeJ,Zhang T.Stochastic paritialdifferential equations. . 1996[12] Xie Y C.Exact solutions for stochastic dv quations. PhysLetter A . 2003[13] Xie Y C.Exact solutions for stochastic mKdv equations. Chaos,Solitons&Fractals . 2004[14] 李德生,张鸿庆. 改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解[J]. 物理学报. 2003(07) [15] 张解放,陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解[J]. 物理学报. 2001(09) [16] 闫振亚. 组合KdV-mKdV方程的函数变换和精确解析解[J]. 烟台大学学报(自然科学与工程版). 2001(02) [17] 闫振亚,张鸿庆. 具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解[J]. 物理学报. 1999(11) [18] 楼森岳,阮航宇. 变系数KdV方程和变系数MKdV方程的无穷多守恒律[J]. 物理学报. 1992(02) [19] Arnaud Debussche,Jacques Printems. Effect of a Localized Random Forcing Term on the Korteweg-De Vries Equation[J] ,2001[20] Liu Xiqiang. Exact solutions of the variable coefficient kdV and sg type equations[J] ,1998 |
No related articles found! |
|