Journal of Guangdong University of Technology ›› 2008, Vol. 25 ›› Issue (3): 31-35.
• Comprehensive Studies • Previous Articles Next Articles
[1] 张双德,张喜红,郝海. 具有阶段结构和隔离干预的SIRS传染病模型[J]. 江西师范大学学报(自然科学版). 2005(04) [2] 李健全,张娟,马知恩. 一类带有一般接触率和常数输入的流行病模型的全局分析[J]. 应用数学和力学. 2004(04) [3] 陈军杰,潘国卫. 一个具暂时免疫且总人数可变的传染病动力学模型[J]. 生物数学学报. 2003(04) [1] S. Busenberg,P. Driessche. Analysis of a disease transmission model in a population with varying size[J] ,1990 [1] Li J,,Ma Z.Qualitative analysis of SIS epidemic model withvaccination and varying total population size. MathCompute Modeling . 2002 [2] Jin Yu,Wang Wen-di,Xiao Shi-wu.An SIRS model witha nonlinear incidence rate. Chaos,Solitions and Frac-tals . 2007 [3] Busenberg S,van-den-Driessche P.Analysis of a disease transmission model i n a population with varyi ng size. Journal of Mathematical Biology . 1990 [4] Roberts M G,Kao R. R.The dynamics of an infectious disease in a population with birth pulses. Math Bios . 1998 [5] Brauer F,Driessche P V.Models for Transmission of Disease with Immigration of Infective. Mathematical Biosciences . 2001 [6] Brauer F.Models for diseases with vertical transmission and nonlinear population dynamics. Math Bios . 1995 [7] Naoki Yoshida,Tadayuki Hara.Global stability of a delayed SIR epidemic model with density dependent birth and death rates. Journal of Computational and Applied Mathematics . 2007 |
No related articles found! |
|