Journal of Guangdong University of Technology ›› 2009, Vol. 26 ›› Issue (4): 84-87.

• Comprehensive Studies • Previous Articles     Next Articles

The Method to Construct Multivariate and Multidimensional Basic-element and Extensible Set with High Order and Multivariates and Multidimensions

  

  1. 1.School of Management,Lanzhou University,Lanzhou 730000,China; 2.School of Business Administration,South China University of Technology,Guangzhou 510641,China; 3.College of Economics and Management,Nanjing University of Aeronautics and Arstronautics,Nanjing 210016,China; 4.College of Mathematics and Info rmat ion Science,Guangxi University,Nanning 530004,China
  • Online:2009-12-01 Published:2009-12-01

Abstract: In order to simutaneously convey some research objectives,it proposes the definitions of multivariate and multidimensional basic-elements and the extensible set with high order and multivariate and multidimensions on the basis of the relative results.These results can enrich the contents of basic-element theory and extension set theory, and unifiy the definitions of extensible set,and enlarge the applied fields that basic-elements describe.

Key words: extenics; basic-element; extensible set; dependent function;

[1] 曹少中,刘贺平,涂序彦.  多层高维关系元可拓集及其性质[J]. 北京印刷学院学报. 2007(04)

[2] 曹少中,刘贺平,涂序彦.  多层多维事元可拓集及其运算[J]. 北京科技大学学报. 2007(06)

[3] 孙弘安.  关于可拓集合的运算[J]. 数学的实践与认识. 2007(11)

[4] 蔡文,石勇.  可拓学的科学意义与未来发展[J]. 哈尔滨工业大学学报. 2006(07)

[5] 曹少中,杨国为,涂序彦,刘贺平.  多层高维动态可拓集合及其性质[J]. 系统工程理论与实践. 2006(05)

[6] 邱卫根,罗中良.  物元可拓集集合性质研究[J]. 数学的实践与认识. 2006(02)

[7] 杨春燕.  多评价特征基元可拓集研究[J]. 数学的实践与认识. 2005(09)

[8] 蔡文,杨春燕,何斌.  可拓学基础理论研究的新进展[J]. 中国工程科学. 2003(02)

[9] 杨春燕,蔡文.  可拓集合的新定义[J]. 广东工业大学学报. 2001(01)

[10] 何斌,张应利.  可拓集合的分类性质和信息开发的可拓方法[J]. 系统工程理论与实践. 1999(07)

[11] 蔡文著.物元模型及其应用[M]. 科学技术文献出版社, 1994

外文题录数据库共找到 2 条

[12] Li Qiao-zing,,Yang Jian-mei.The method to construct multivariate and multi-dimensional basic-element and the corresponding extension set. Proceedings of the 20~(th) International Conference on Multiple Criteria Decision Making . 2009

[13] CAI Guo-liang,DING Zhan-wen.Study of n-dimensional extension set. Journal of Applied Sciences . 2001
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!