Journal of Guangdong University of Technology ›› 2010, Vol. 27 ›› Issue (1): 8-11.
• Comprehensive Studies • Previous Articles Next Articles
[1] M ohler R R, KolodziejW J. An overv iew of b ilinear system theory and applica tions [ J]. IEEE trans SM C, 1980, 10(10) : 683-688.[2] 华向明. 双线性系统建模与控制[M ]. 上海: 华东化工学院出版社, 1990.[3] Aganov ic Z, Ga jic Z. Linear optim a l contro l o f bilinear systems[M ]. New York: Springer-Verlag Berlin, 1995.[4] Tang G Y. Suboptim a l con tro l fo r nonlinear sy stem s: a successive approx im ation approach[ J]. System s& Control Le-tters, 2005, 54: 429-434.[5] Tang G Y, MaH, Zhang B L. Successive-approximation approach of optim al contro l fo r bilinear d iscre te-tim e systems [ J]. IEE Proc -Control Theory App,l 2005, 152 ( 6 ): 639-644.[6] K im Y J, K im B S, Lim M T. Composite contro l for s ingu larly perturbed b ilinea r system s v ia successive Ga lerkin approximation[ J]. IEE Proc-Contro l Theo ry App,l 2003, 150( 5): 483-488.[7] ChenM S, Hw angY R, H uangK C. Nonlinear controls for a class o f discre te-tim e bilinear system s [ J]. In t J Robust Nonlinear Con tro ,l 2003, 13: 1079-1090.[8] Zhang Chengke, Gao Jingguang, Chen G elin, eta .l Sadd lepoint Equ ilibrium Strategy of the bilinear-quadratic Twoperson Zero- sum Dynam ic Gam e: A Recursive Approach [ J]. DCDIS 2005, 3: 1158-1165.[ 9] Zhang Cheng Ke, Sunpeihong, Yuan wan l.i The Quadratic Saddlepoint Equilibrium Strategy for Discrete Time Bilinear System [ C ] / / Inte rnational Conference of Industr ial Engineering and Engineering Management, Zheng zhou, 2008.[ 10] HOFERE P, TIBKEN B. An Iterative M ethod for the Finite-Time Bilinear-Quadratic Control Problem [ J]. Journal of optimization theory and application, 1988, 57(3): 10-18.[11] Baser T, OlsderG J.Dynam ic non- coopera tive gam e theory [M]. New York: A cadem ic Press, 1991. |
No related articles found! |
|