Journal of Guangdong University of Technology ›› 2010, Vol. 27 ›› Issue (1): 8-11.

• Comprehensive Studies • Previous Articles     Next Articles

Iterative A lgorithm for Saddle-point Equilibrium ofDiscrete-time Bilinear Systems

  

  1. 1. Schoo l o fM anagem ent; 2. School o f Econom ics and Comm erce, Guangdong University of Technology, Guangzhou 510520, China
  • Online:2010-03-25 Published:2010-03-25

Abstract: Regarding the saddle-po int equ ilibrium for discrete t ime bilinear-quadratic controlin the f in ite t ime, the sadd le-po int equ ilibrium is converted into a non linear tw o po int boundary va lue by using the dynam ic prog ramm ing pr incipa.l Then by using a transfo rmation, the nonlinear tw o po int boundary value is transfo rmed in to a "linear" two point boundary va luew ith "separate" form. Finally, a new iterative a lgorithm is constructed to solve the problem, w hich provides a new approach to the problem w ith the differential gam es o f discrete-time b ilinear systems.

Key words:  discrete-t ime bilinear system; sadd le-po int equilibrium; R iccat i equation

[1] M ohler R R, KolodziejW J. An overv iew of b ilinear system theory and applica tions [ J]. IEEE trans SM C, 1980, 10(10) : 683-688.

[2] 华向明. 双线性系统建模与控制[M ]. 上海: 华东化工学院出版社, 1990.

[3] Aganov ic Z, Ga jic Z. Linear optim a l contro l o f bilinear systems[M ]. New York: Springer-Verlag Berlin, 1995.

[4] Tang G Y. Suboptim a l con tro l fo r nonlinear sy stem s: a successive approx im ation approach[ J]. System s& Control Le-tters, 2005, 54: 429-434.

[5] Tang G Y, MaH, Zhang B L. Successive-approximation approach of optim al contro l fo r bilinear d iscre te-tim e systems [ J]. IEE Proc -Control Theory App,l 2005, 152 ( 6 ): 639-644.

[6] K im Y J, K im B S, Lim M T. Composite contro l for s ingu larly perturbed b ilinea r system s v ia successive Ga lerkin approximation[ J]. IEE Proc-Contro l Theo ry App,l 2003, 150( 5): 483-488.

[7] ChenM S, Hw angY R, H uangK C. Nonlinear controls for a class o f discre te-tim e bilinear system s [ J]. In t J Robust Nonlinear Con tro ,l 2003, 13: 1079-1090.

[8] Zhang Chengke, Gao Jingguang, Chen G elin, eta .l Sadd lepoint Equ ilibrium Strategy of the bilinear-quadratic Twoperson Zero- sum Dynam ic Gam e: A Recursive Approach [ J]. DCDIS 2005, 3: 1158-1165.

[ 9] Zhang Cheng Ke, Sunpeihong, Yuan wan l.i The Quadratic Saddlepoint Equilibrium Strategy for Discrete Time Bilinear System [ C ] / / Inte rnational Conference of Industr ial Engineering and Engineering Management, Zheng zhou, 2008.

[ 10] HOFERE P, TIBKEN B. An Iterative M ethod for the Finite-Time Bilinear-Quadratic Control Problem [ J]. Journal of optimization theory and application, 1988, 57(3): 10-18.

[11] Baser T, OlsderG J.Dynam ic non- coopera tive gam e theory [M]. New York: A cadem ic Press, 1991.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!