Journal of Guangdong University of Technology ›› 2011, Vol. 28 ›› Issue (1): 50-53.
• Comprehensive Studies • Previous Articles Next Articles
[1] Mao X R.Stochastic differential equations and applications[M].Second Edition.Chichester: Harwood, 2007.147-234.[2] Zhou S B, Wang Z Y, Feng D.Stochastic functional differential equations with infinite delay[J].J Math Anal Appl, 2009(357): 416-426.[3] Li C X, Sun J T, Sun R Y.Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects[J].Journal of the Franklin Institute, 2010(347): 1186-1198.[4] Cao W R, Liu M Z, Fan Z C.MSstability of the EulerMaruyama method for stochastic differential delay equations[J].Appl Math Comput, 2004(159): 127-135.[5] Li R H, Meng H B, Dai Y H.Convergence of numerical solutions to stochastic delay differential equations with jumps[J].Appl Math Comput, 2006(172): 584-602.[6] Liu M Z, Cao W R, Fan Z C.Convergence and stability of the semiimplicit Euler method for a linear stochastic differential delay equation[J].J Comput Appl Math, 2004(170): 255-268.[7] Fan Z C, Liu M Z, Cao W R.Existence and uniqueness of the solutions and convergence of semiimplicit Euler methods for stochastic pantograph equations[J].J Math Anal Appl, 2007(325): 1142-1159.[8] Zhang H M, Gan S Q, Hu L.The splitstep backward Euler method for linear stochastic delay differential equations[J].J Comput Appl Math, 2009(225): 558-568.[9] 谭英贤, 甘四清.中立型随机比例延迟微分方程平衡半隐式Euler方法的均方收敛性[J].数学理论与应用, 2009, 29(4): 47-51.[10] Zhao G H, Song M H, Liu M Z.Exponential stability of EulerMaruyama solutions for impulsive stochastic differential equations with delay[J].Appl Math Comput, 2010(215): 3425-3432.[11] Mohammed S E A.Stochastic functional differential equations[M].Boston: Pitman Advanced Publishing Program, 1984.[12] Mao X R.Exponential stability of stochastic differential equations[M].New York: Marcel Dekker, 1994.147-290.[13] Maruyama G.Continuous Markov processes and stochastic equations[J].Rend Circolo Math Palermo, 1955(4): 48-90.[14] 曹婉容.随机延迟微分方程几种数值方法的收敛性和稳定性[D].哈尔滨:哈尔滨工业大学博士学位论文,2004. |
No related articles found! |
|