Journal of Guangdong University of Technology ›› 2011, Vol. 28 ›› Issue (1): 82-85.

• Comprehensive Studies • Previous Articles     Next Articles

Anti-periodic Boundary Value Problems with Nonlinear Evolution Equations

  

  1. Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China
  • Online:2011-12-25 Published:2011-12-25

Abstract: Using Leray-Schauder’s topology degree theory in a nonlinear analysis,it studies Antiperiodic boundary value problems with nonlinear evolution equations associated with maximal monotone mappings in Hilbert space,and conducts further research into the results obtained.

Key words: nonlinear evolution equation; maximal monotone mapping; antiperiodic solution; Leray-Schauder degree

[1] Okochi H.On the existence of periodic solutions to nonlinear abstract parabolic equations[J].J Math Soc,1988(40):541-553.

[2] Okochi H.On the existence of antiperiodic solutions to a nonlinear evolution equation associated with differential operators[J].J Funct Anal,1990(91):246-258.

[3] Okochi H.On the existence of antiperiodic solutions to nonlinear parabolic equations in noncylindrical domains[J].Nonlinear Anal,1990(14):771-783.

[4] Haraux A.Antiperiodic solutions of some nonlinear evolution equations[J].Manuscripta math,1989(63):479-505.

[5] Chen Yuqing.Note on Massera’s theorem on antiperiodic solution[J].Advances in Math Sci and Appl,1999(9):125-128.

[6] Chen Y Q,Cho Y J,O’Regan D.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr,2005(278):335-362.

[7] Chen Y Q,Wang X D,Xu H X.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal Appl,2002(273):627-636.

[8] Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal Appl,2006(315):337-348.

[9] Chen Y Q,J Nieto J,O’Regan D.Antiperiodic solutions for fully nonlinear firstorder differential equations[J].Mathematical and Computer Modeling,2007(46):1183-1190.

[10] Chen Y Q,Cho Y J,Jung J S.Antiperiodic solutions for semilinear evolution equations[J].Mathematical and Computer Modeling,2004(40):1123-1130.

[11] Liu Zhenhai.Antiperiodic solutions to nonlinear evolution equations[J].Journal of Functional Analysis,2010(258):2026-2033.

[12] Zeidler E.Nonlinear functional analysis and its applications II[M].New York:Springer,1990.

[13] Kyritsi S,Matzakos N,Papageorgiou N S.Periodic problems for strongly nonlinear secondorder differential inclusions[J].J Diff Eqns,2002(183):279-302.

[14] Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Noordhoff:Leyden,1976.

[15] Wagner D H.Survey of measurable selection theorems[J].SIAM J Control Optim,1977(15):859-890.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!