Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 87-89,112.doi: 10.12052/gdutxb.170175

Previous Articles     Next Articles

An Efficient Algorithm for American Option Pricing in the Jump-Diffusion Model

Yang Shu-ling   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090, China
  • Received:2017-12-20 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

Abstract: The efficient numerical methods for solving the American option pricing model under jump-diffusion is studied. First of all, the high accuracy compact difference scheme is applied to discrete the option pricing model in the spatial direction, and discrete the temporal variable of the resulting ordinary differential equation to the linear complementarity problem (LCP). The approximation value of option price is obtained by solving the LCP. Finally, in order to overcome the nonsmoothness of payoff function, the singularity separating method is utilized for the American option pricing model to improve the accuracy of calculation. Numerical examples demonstrate the superiority of the algorithm.

Key words: American option, high accuracy compact difference scheme, singularity separating method

CLC Number: 

  • O241.8
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-659.
[2] MERTON R. Option pricing when underlying stock returns are discontinuous[J]. Journal of Finance Economics, 1976, 3:125-144.
[3] KOU S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.
[4] 粱进. 具有跳扩散的美式期权二叉树计算格式的收敛速率[J]. 高等学校计算数学学, 2008, 30(1):76-96.LIANG J. On the convergence rate of the binomial tree scheme for an American option with jump-diffusion[J]. Numerical Mathematics A Journal of Chinese Universities, 2008, 30(1):76-96.
[5] 何颖俞. 美式期权的三叉树定价模型[J]. 黑龙江大学自然科学学报, 2008, 25(1):81-84.HE Y Y. A trinomial tree methods for princing American options[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(1):81-84.
[6] ALMENDRAL A, OOSTERLEE C. Numerical valuation of options with jumps in the underlying[J]. Applied Numerical Mathematics, 2005, 53(1):1-18.
[7] HALLUIN Y, FORSYTH P, VETZAL K. Robust numerical methods for contingent claims under jump diffusion processes[J]. IMA Journal of Numerical Analysis, 2005, 25:87-112.
[8] FENG L, LINETSKY V. Pricing options in jump-diffusion models:an extrapolation approach[J]. Journal of the Operations Research Society of America, 2008, 56(2):304-325.
[9] 钟坚敏, 柴昱洲, 孔繁博,等. 美式看跌期权定价问题的有限差分直接法[J]. 重庆理工大学学报, 2011, 25(11):106-110.ZHONG J M, CHAI Y Z, KONG F B, et al. Finite difference direct method for American put option[J]. Journal of Chongqing Universityof Technology, 2011, 25(11):106-110.
[10] 王丽萍, 许作良, 马青华, 等. 美式看跌期权定价的两种有限差分格式[J]. 数学的实践与认识, 2012, 42(24):33-38.WANG L P, XU Z L, MA Q H, et al. Two kinds of finite difference scheme of pricing for American put options[J]. Mathematics in Practice and Theory, 2012, 42(24):33-38.
[11] YANG S L, LEE S T, SUN H W. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8):1730-1748.
[12] SPOTZ W F, CAREY G F. Extension of high-order compact schemes to time-dependent problems[J]. Numerical Methods for Partial Ditierential Equations, 2001, 17(6):657-672.
[13] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. London:Academic Press, 1992.
[14] IKONEN S, TOIVANEN J. Operator splitting methods for American option pricing[J]. Applied Mathematics Letters, 2004, 17(7):809-814.
[15] ZHU Y L, WU X, CHERN I L. Derivatives securities and difference methods[M]. New York:Springer, 2004.
[16] 王建华, 董志华. 奇点分离法在美式期权定价中的应用[J]. 武汉理工大学学报, 2010, 32(5):803-814.WANG J H, DONG Z H. Application of singularity-separating method in pricing American option[J]. Journal of Wuhan University Oftechnology, 2010, 32(5):803-814.
[1] Cen Da-kang, Wang Zhi-bo. A Variational Iteration Method for Fractional Predator-Prey Model [J]. Journal of Guangdong University of Technology, 2022, 39(02): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!