Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 87-89,112.doi: 10.12052/gdutxb.170175
Previous Articles Next Articles
Yang Shu-ling
CLC Number:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-659. [2] MERTON R. Option pricing when underlying stock returns are discontinuous[J]. Journal of Finance Economics, 1976, 3:125-144. [3] KOU S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101. [4] 粱进. 具有跳扩散的美式期权二叉树计算格式的收敛速率[J]. 高等学校计算数学学, 2008, 30(1):76-96.LIANG J. On the convergence rate of the binomial tree scheme for an American option with jump-diffusion[J]. Numerical Mathematics A Journal of Chinese Universities, 2008, 30(1):76-96. [5] 何颖俞. 美式期权的三叉树定价模型[J]. 黑龙江大学自然科学学报, 2008, 25(1):81-84.HE Y Y. A trinomial tree methods for princing American options[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(1):81-84. [6] ALMENDRAL A, OOSTERLEE C. Numerical valuation of options with jumps in the underlying[J]. Applied Numerical Mathematics, 2005, 53(1):1-18. [7] HALLUIN Y, FORSYTH P, VETZAL K. Robust numerical methods for contingent claims under jump diffusion processes[J]. IMA Journal of Numerical Analysis, 2005, 25:87-112. [8] FENG L, LINETSKY V. Pricing options in jump-diffusion models:an extrapolation approach[J]. Journal of the Operations Research Society of America, 2008, 56(2):304-325. [9] 钟坚敏, 柴昱洲, 孔繁博,等. 美式看跌期权定价问题的有限差分直接法[J]. 重庆理工大学学报, 2011, 25(11):106-110.ZHONG J M, CHAI Y Z, KONG F B, et al. Finite difference direct method for American put option[J]. Journal of Chongqing Universityof Technology, 2011, 25(11):106-110. [10] 王丽萍, 许作良, 马青华, 等. 美式看跌期权定价的两种有限差分格式[J]. 数学的实践与认识, 2012, 42(24):33-38.WANG L P, XU Z L, MA Q H, et al. Two kinds of finite difference scheme of pricing for American put options[J]. Mathematics in Practice and Theory, 2012, 42(24):33-38. [11] YANG S L, LEE S T, SUN H W. Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model[J]. International Journal of Computer Mathematics, 2011, 88(8):1730-1748. [12] SPOTZ W F, CAREY G F. Extension of high-order compact schemes to time-dependent problems[J]. Numerical Methods for Partial Ditierential Equations, 2001, 17(6):657-672. [13] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. London:Academic Press, 1992. [14] IKONEN S, TOIVANEN J. Operator splitting methods for American option pricing[J]. Applied Mathematics Letters, 2004, 17(7):809-814. [15] ZHU Y L, WU X, CHERN I L. Derivatives securities and difference methods[M]. New York:Springer, 2004. [16] 王建华, 董志华. 奇点分离法在美式期权定价中的应用[J]. 武汉理工大学学报, 2010, 32(5):803-814.WANG J H, DONG Z H. Application of singularity-separating method in pricing American option[J]. Journal of Wuhan University Oftechnology, 2010, 32(5):803-814. |
[1] | Cen Da-kang, Wang Zhi-bo. A Variational Iteration Method for Fractional Predator-Prey Model [J]. Journal of Guangdong University of Technology, 2022, 39(02): 62-65. |
|