Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (05): 120-126,136.doi: 10.12052/gdutxb.220063
Previous Articles Next Articles
Li Yao-dong, Ren Zhi-gang, Wu Zong-ze
CLC Number:
[1] WANG L M, LIU F F, YU J X, et al. Iterative learning fault-tolerant control for injection molding processes against actuator faults [J]. Journal of Process Control, 2017, 59(11): 59-72. [2] ZOU T, WU S, ZHANG R D. Improved state space model predictive fault-tolerant control for injection molding batch processes with partial actuator faults using ga optimization [J]. ISA Transactions, 2018, 73(2): 147-153. [3] 刘欣, 范希营, 郭永环, 等. 注塑工艺参数优化研究现状及发展趋势[J]. 塑料科技, 2021, 49(2): 106-110. LIU X, FAN X Y, GUO Y H, et al. Research status and development trend of injection molding process parameter optimization [J]. Plastic Science and Technology, 2021, 49(2): 106-110. [4] GAO F R, YANG Y, SHAO C. Robust iterative learning control with applications to injection molding process [J]. Chemical Engineering Science, 2001, 56(24): 7025-7034. [5] TAN K K, TANG J C. Learning-enhanced PI control of ram velocity in injection molding machines [J]. Engineering Applications of Artificial Intelligence, 2002, 15(1): 65-72. [6] 崔彩莲, 孙明轩. 注塑机注射速度的离散预期学习控制[J]. 机械工程学报, 2007, 43(6): 41-47. CUI C L, SUN M X. Discrete anticipatory learning control of ram velocity in injection molding machines [J]. Chinese Journal of Mechanical Engineering, 2007, 43(6): 41-47. [7] HOPMANN C, RESSMANN A, REITER M, et al. A self-optimising injection moulding process with model-based control system parameterisation [J]. International Journal of Computer Integrated Manufacturing, 2016, 29(11): 1190-1199. [8] 陈胜裕, 李辉. 基于CNC人工蜂群算法的全电动注塑机料筒温控系统[J]. 塑料, 2021, 50(4): 65-70. CHEN S Y, LI H. Temperature control system of full electric injection molding machine barrel based on CNC artificial bee colony algorithm [J]. Plastics, 2021, 50(4): 65-70. [9] HOPMANN C, KAHVE C E, SCHMITZ M, et al. A comparison of predictive control strategies for a highly segmented injection mold tempering [J]. Polymer, 2021, 218(5): 123494. [10] HONEK M, KVASNICA M, SZUCS A, et al. A low-complexity explicit MPC controller for AFR control [J]. Control Engineering Practice, 2015, 42(9): 118-127. [11] SUARDI A, LONGO S, KERRIGAN E C, et al. Explicit MPC: hard constraint satisfaction under low precision arithmetic [J]. Control Engineering Practice, 2016, 47(5): 60-69. [12] ZEILINGER M N, JONES C N, MORARI M. Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization [J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1524-1534. [13] 郭心德, 丁宏强. 离散制造智能工厂场景的AGV路径规划方法[J]. 广东工业大学学报, 2021, 38(6): 70-76. GUO X D, DING H Q. An AGV path planning method for discrete manufacturing smart factory [J]. Journal of Guangdong University of Technology, 2021, 38(6): 70-76. [14] GUO Y M, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding: a review [J]. Neurocomputing, 2016, 187(8): 27-48. [15] Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(6): 1-8. GARY Y, LI B, XIE S L. An evolutionary optimization of LSTM for model recovery of geophysical fluid dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(6): 1-8. [16] REN Z G, LAI J L, WU Z Z, et al. Deep neural networks-based real-time optimal navigation for an automatic guided vehicle with static and dynamic obstacles [J]. Neurocomputing, 2021, 443(9): 329-344. [17] LOCKNER Y, HOPMANN C. Induced network-based transfer learning in injection molding for process modelling and optimization with artificial neural networks [J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(11): 3501-3513. [18] CHENG L, WANG Z, SONG Y, et al. Real-time optimal control for irregular asteroid landings using deep neural networks [J]. Acta Astronautica, 2020, 170(5): 66-79. [19] LUCIA S, NAVARRO D, KARG B, et al. Deep learning-based model predictive control for resonant power converters [J]. IEEE Transactions on Industrial Informatics, 2020, 17(1): 409-420. [20] CHEON K, KIM J, HAMADACHE M, et al. On replacing PID controller with deep learning controller for DC motor system [J]. Journal of Automation and Control Engineering, 2015, 3(6): 452-456. [21] WANG K K, SHEN S F. Computer-aided design and fabrication of molds and computer control of injection molding [M]. New York: Cornell University, 1985: 1-50. [22] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-04-16]. https://doi.org/10.48550/arXiv.1412.6980. [23] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(21): 436-444. [24] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks [J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. |
[1] | Ma Shan, Tang Chao-yu, Ma Jun-feng, Peng Tao. Optimal Train Operation Control via a Symmetric Alternating Direction Method of Multipliers [J]. Journal of Guangdong University of Technology, 2022, 39(05): 38-45. |
[2] | Peng Ji-guang, Xiao Han-zhen. Tracking and Obstacle Avoidance of Multi-mobile Robots Under Model Predictive Control [J]. Journal of Guangdong University of Technology, 2022, 39(05): 93-101. |
[3] | WANG Pu-Xi, FENG Guang. A Study of Optimal Control Strategy for Networked Control Systems with Stochastic Delay and Packet Losses [J]. Journal of Guangdong University of Technology, 2014, 31(1): 32-35. |
[4] | Lin Zhi. Multiscale Mixing Norms for Scalar Mixing and Transport in Fluids [J]. Journal of Guangdong University of Technology, 2012, 29(2): 1-6. |
|