Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (05): 9-20.doi: 10.12052/gdutxb.220073

Previous Articles     Next Articles

Progress and Prospect of Motion Control for the Flexible Manipulator Under the Influence of Actuator Faults

Meng Qing-xin1,2,3, Lai Xu-zhi1,2,3, Yan Ze1,2,3, Wu Min1,2,3   

  1. 1. School of Automation, China University of Geosciences, Wuhan 430074, China;
    2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China;
    3. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
  • Received:2022-04-01 Online:2022-09-10 Published:2022-07-18

Abstract: With the continuous development of manipulator technology, the traditional rigid manipulator, such as space manipulator, surgical manipulator and man-machine interactive manipulator, etc. gradually has difficulties in meeting the needs of some new manipulator systems in terms of lightweight, motion flexibility, large space range, etc. More and more researchers pay attention to the research of flexible manipulator and its high-precision motion control. At present, some effective motion control methods have been proposed for flexible manipulator. However, when an actuator of the manipulator fails, it is difficult for conventional control methods to ensure the original control performances and may even lead to system instability. The research on the flexible manipulator motion control under the effect of actuator faults has important theoretical significance and application prospect. Firstly, the existing motion control methods of flexible manipulator are summarized. Then, according to the types of actuator faults, the effect of actuator performance fault, actuator completely damaged fault and sudden actuator fault on the system are analyzed, and the state of art methods that are used to overcome these actuator faults are summarized. Finally, the key problems to be further solved in the motion control of flexible manipulator under the effect of actuator faults are discussed, and three prospect directions summarized, which has reference value for the further research of flexible manipulator motion control.

Key words: flexible manipulator, motion control, actuator faults, completely damaged fault, sudden fault

CLC Number: 

  • TP241.2
[1] 周济. 智能制造?“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.
ZHOU J. Intelligent Manufacturing-main direction of "Made in China 2025" [J]. China Mechanical Engineering, 2015, 26(17): 2273-2284.
[2] 王政, 韩鑫, 靳博. 制造业数字化转型步伐加快 (“十四五”, 我们这样开局起步)[N]. 人民日报, 2021-07-29(01).
[3] NIKU S B. Introduction to robotics: Analysis, systems, applications [M]. [S. l.]: Prentice Hall, 2001.
[4] 黄攀峰, 张琦, 刘正雄, 等. 一种基于强化学习的冗余机械臂路径规划方法: CN111923039A [P/OL]. 2020-11-13 [2022-05-08]. https://cprs.patentstar.com.cn/Search/Detail?ANE=9HBB4BDA7AFA3CBA9IGG9DGA9HAE9AFD9GCCEIIA9IFG9AIF.
[5] DWIVEDY S K, EBERHARD P. Dynamic analysis of flexible manipulators, a literature review [J]. Mechanism and Machine Theory, 2006, 41(7): 749-777.
[6] 中国政府网. 神舟十三号航天员乘组圆满完成首次出舱活动全部既定任务[EB/OL]. (2021-11-08) [2022-05-08]. http://www.gov.cn/xinwen/2021-11/08/content_5649707.htm.
[7] LI Z, JAN F L, REN H L, et al. A novel tele-operated flexible robot targeted for minimally invasive robotic surgery [J]. Engineering, 2015, 1(1): 73-78.
[8] MIZANOOR R S M, IKEURA R. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system [J]. Robotics and Biomimetics, 2018, 5(1): 7.
[9] KONG Y X, SONG S, ZHANG N, et al. Design and kinematic modeling of In-Situ torsionally-steerable flexible surgical robots [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1864-1871.
[10] ZUO S Y, CHEN T, CHEN X, et al. A wearable hands-free human-robot interface for robotized flexible endoscope [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3953-3960.
[11] YE J H, HUANG J. Control of beam-pendulum dynamics in a tower crane with a slender jib transporting a distributed-mass load [J/OL]. IEEE Transactions on Industrial Electronics (2022-02-09)[2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9709192. DOI: 10.1109/TIE.2022.3148741.
[12] LIU M, CAO D Q, LI J P, et al. Dynamic modeling and vibration control of a large flexible space truss [J]. Meccanica, 2022, 57(5): 1017-1033.
[13] 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 523899.
LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer [J]. Acta Aeronautica ET Astronautica Sinica, 2021, 42(1): 523899.
[14] PEZA-SOLIS J F, SILVA-NAVARRO G, GARCIA-PEREZ O A, et al. Trajectory tracking of a single flexible-link robot using a modal cascaded-type control [J]. Applied Mathematical Modelling, 2022, 104: 531-547.
[15] 葛洋, 张安彩, 韩丹阳, 等. 平面欠驱动两杆柔性机械臂的全局稳定控制[J]. 河北科技大学学报, 2014, 35(5): 428-434.
GE Y, ZHANG A C, HAN D Y, et al. Global stabilization control of underactuated horizontal two-link flexible manipulator [J]. Journal of Hebei University of Science and Technology, 2014, 35(5): 428-434.
[16] WANG H P, ZHOU X Y, TIAN Y. Robust adaptive fault-tolerant control using RBF-based neural network for a rigid-flexible robotic system with unknown control direction [J]. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1272-1302.
[17] 赖旭芝, 佘锦华, 吴敏. 欠驱动机械系统控制[M]. 北京: 科学出版社, 2013: 1-11.
[18] ROMAGNOLI R, GARONE E. A general framework for approximated model stable inversion [J]. Automatica, 2019, 101: 182-189.
[19] CUI L L, WANG H S, CHEN W D. Trajectory planning of a spatial flexible manipulator for vibration suppression [J]. Robotics and Autonomous Systems, 2020, 123: 103316.
[20] ?LMAN M M, YAVUZ ?, TASER P Y. Generalized input preshaping vibration control approach for multi-link flexible manipulators using machine intelligence [J]. Mechatronics, 2022, 82: 102735.
[21] LIAO D X, SUNG C K, THOMPSON B S. The design of flexible robotic manipulators with optimal arm geometries fabricated from composite laminates with optimal material properties [J]. The International Journal of Robotics Research, 1987, 6(3): 116-130.
[22] ZHOU Z P, TONG J, GU Z Y, et al. Simulation and test of seperated and manually adjustable shock absorber [J]. Advanced Materials Research, 2013, 803: 467-470.
[23] LI W P, LUO B, HUANG H. Active vibration control of flexible joint manipulator using input shaping and adaptive parameter auto disturbance rejection controller [J]. Journal of Sound and Vibration, 2016, 363: 97-125.
[24] SHIN H C, CHOI S B. Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors [J]. Mechatronics, 2001, 11(6): 707-729.
[25] PATTERSON Z J, SABELHAUS A P, MAJIDI C. Robust control of a multi-axis shape memory alloy-driven soft manipulator [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2210-2217.
[26] 宋轶民. 柔性冗余度机器人动态响应主动控制[D]. 北京: 北京工业大学, 2001.
[27] LIU Z J, LIU J K. PDE modeling and boundary control for flexible mechanical system [M]. Singapore: Springer Singapore, 2020.
[28] ZHAO Z J, HE X Y, AHN C K. Boundary disturbance observer-based control of a vibrating single-link flexible manipulator [J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 51(4): 2382-2390.
[29] CAO F F, LIU J K. Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance [J]. International Journal of Control, 2018, 91(5): 1091-1103.
[30] QIAN W T, MA C C H. A new controller design for a flexible one-link manipulator [J]. IEEE Transactions on Automatic Control, 1992, 37(1): 133-137.
[31] THOMAS S, BANDYOPADHYAY B. Comments on " a new controller design for a flexible one link manipulator" [J]. IEEE Transactions on Automatic Control, 1997, 42(3): 425-429.
[32] 戴学丰, 冯宏飚, 王艳春. 具有模糊二次补偿的柔性臂滑模控制研究[J]. 自动化技术与应用, 2004, 23(10): 8-10.
DAI X F, FENG H B, WANG Y C. Sliding mode control with additional fuzzy compensations of for a flexible manipulator [J]. Techniques of Automation and Applications, 2004, 23(10): 8-10.
[33] SUN T R, ZHANG X X, YANG H J, et al. Singular perturbation-based saturated adaptive control for underactuated Euler-Lagrange systems [J]. ISA Transactions, 2022, 119: 74-80.
[34] 洪昭斌, 陈力. 柔性空间机械臂基于奇异摄动法的鲁棒跟踪控制和柔性振动主动控制[J]. 工程力学, 2010, 27(8): 191-198.
HONG Z B, CHEN L. Robust control and active vibration control of space flexible manipulator by singular perturba-tion approach [J]. Engineering Mechanics, 2010, 27(8): 191-198.
[35] 杨春雨, 许一鸣, 代伟, 等. 柔性机械臂的双时间尺度组合控制[J]. 控制理论与应用, 2019, 36(4): 659-665.
YANG C Y, XU Y M, DAI W, et al. Two-time-scale composite control of flexible manipulators [J]. Control Theory & Applications, 2019, 36(4): 659-665.
[36] MENG Q X, LAI X Z, WANG Y W, et al. A fast stable control strategy based on system energy for a planar single-link flexible manipulator [J]. Nonlinear Dynamics, 2018, 94(1): 615-626.
[37] MENG Q X, LAI X Z, YAN Z, et al. Position control with zero residual vibration for two degrees-of-freedom flexible systems based on motion trajectory optimization [J]. Information Sciences, 2021, 575: 698-713.
[38] ABE A. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation [J]. Mechanism and Machine Theory, 2009, 44(9): 1627-1639.
[39] CAO F F, LIU J K. Optimal trajectory control for a two-link rigid-flexible manipulator with ODE-PDE model [J]. Optimal Control Applications and Methods, 2018, 39(4): 1515-1529.
[40] 孟庆鑫, 赖旭芝, 闫泽, 等. 双连杆刚柔机械臂无残余振动位置控制[J]. 控制理论与应用, 2020, 37(3): 620-628.
MENG Q X, LAI X Z, YAN Z, et al. Position control without residual vibration for a two-link rigid-flexible manipulator [J]. Control Theory & Applications, 2020, 37(3): 620-628.
[41] GAO H J, HE W, SONG Y H, et al. Modeling and neural network control of a flexible beam with unknown spatiotemporally varying disturbance using assumed mode method [J]. Neurocomputing, 2018, 314: 458-467.
[42] SUN C Y, GAO H J, HE W, et al. Fuzzy neural network control of a flexible robotic manipulator using assumed mode method [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5214-5227.
[43] XING X Y, LIU J K. Modeling and robust adaptive iterative learning control of a vehicle-based flexible manipulator with uncertainties [J]. International Journal of Robust and Nonlinear Control, 2019, 29(8): 2385-2405.
[44] 曹小涛, 李元春. 受时变约束柔性臂鲁棒RBF神经网络力/位置控制[J]. 控制与决策, 2007, 22(9): 977-982.
CAO X T, LI Y C. Robust RBF neural network force/position control of time varying constrained flexible manipulator [J]. Control and Decision, 2007, 22(9): 977-982.
[45] MENG Q X, LAI X Z, YAN Z, et al. Motion planning and adaptive neural tracking control of an uncertain two-link rigid-flexible manipulator with vibration amplitude constraint [J/OL]. IEEE Transactions on Neural Networks and Learning Systems (2021-02-10) [2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9352495. DOI: 10.1109/TNNLS.2021.3054611.
[46] 贾庆轩, 符颖卓, 陈钢, 等. 基于状态观测器的空间机械臂关节故障诊断[J]. 航空学报, 2021, 42(1): 158-168.
JIA Q X, FU Y Z, CHEN G, et al. State observer based joint failure diagnosis of space manipulators [J]. Acta Aeronaut-ica ET Astronautica Sinica, 2021, 42(1): 158-168.
[47] CHEN T, SHAN J J. Distributed tracking of a class of underactuated Lagrangian systems with uncertain parameters and actuator faults [J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4244-4253.
[48] CAO F F, LIU J K. Boundary control for PDE flexible manipulators: accommodation to both actuator faults and sensor faults [J]. Asian Journal of Control (2021-07-07)[2022-05-09]. https://onlinelibrary.wiley.com/doi/full/10.1002/asjc.2560. DOI: 10.1002/asjc.2560.
[49] XU F Y, TANG L, LIU Y J. Tangent barrier Lyapunov function-based constrained control of flexible manipulator system with actuator failure [J]. International Journal of Robust and Nonlinear Control, 2021, 31(17): 8523-8536.
[50] ZHANG S, WU Y, HE X Y, et al. Cooperative fault-tolerant control for a mobile dual flexible manipulator with output constraints [J/OL]. IEEE Transactions on Automation Science and Engineering (2021-08-18)[2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9516587. DOI: 10.1109/TASE.2021.3102588.
[51] LIU Z J, LIU J K, HE W. Robust adaptive fault tolerant control for a linear cascaded ODE-beam system [J]. Automatica, 2018, 98: 42-50.
[52] PENG J Z, DUBAY R. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics [J]. ISA Transactions, 2011, 50(4): 588-598.
[53] YAN Z, LAI X Z, MENG Q X, et al. Tracking control of single-link flexible-joint manipulator with unmodeled dynamics and dead zone [J]. International Journal of Robust and Nonlinear Control, 2021, 31(4): 1270-1287.
[54] ZHOU Q, ZHAO S Y, LI H Y, et al. Adaptive neural network tracking control for robotic manipulators with dead zone [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3611-3620.
[55] WANG H Q, KANG S J. Adaptive neural command filtered tracking control for flexible robotic manipulator with input dead-zone [J]. IEEE Access, 2019, 7: 22675-22683.
[56] ZHU Y K, QIAO J Z, ZHANG Y M, et al. High-precision trajectory tracking control for space manipulator with neutral uncertainty and deadzone nonlinearity [J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 2254-2262.
[57] 黄小琴, 陈力. 存在关节力矩输出死区及外部干扰的漂浮基空间机械臂积分滑模神经网络自适应控制[J]. 计算力学学报, 2018, 35(6): 713-718.
HUANG X Q, CHEN L. Integral sliding mode neural network adaptive control for the free-floating space manipulator with joint torque output dead-zone and external disturbance [J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 713-718.
[58] TAO G, KOKOTOVIC P V. Adaptive control of plants with unknown dead-zones [J]. IEEE Transactions on Automatic Control, 1994, 39(1): 59-68.
[59] ZHANG C L, YANG T, SUN N, et al. An adaptive fuzzy control method of single-link flexible manipulators with input dead-zones [J]. International Journal of Fuzzy Systems, 2020, 22(8): 2521-2533.
[60] 黄小琴, 陈力. 双柔臂空间机器人运动、振动一体化抗死区控制[J]. 系统仿真学报, 2020, 32(3): 430-437.
HUANG X Q, CHEN L. Anti-dead-zone control for two flexible links space robot with integration of motion and vibration [J]. Journal of System Simulation, 2020, 32(3): 430-437.
[61] ZHU Z C, PAN Y N, ZHOU Q, et al. Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis [J]. IEEE Transactions on Fuzzy Systems, 2021, 29(5): 1273-1283.
[62] YIN Z, HE W, KAYNAK O, et al. Uncertainty and disturbance estimator-based control of a flapping-wing aerial vehicle with unknown backlash-like hysteresis [J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4826-4835.
[63] ZHOU J, ZHANG C J, WEN C Y. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity [J]. IEEE Transactions on Automatic Control, 2007, 52(3): 503-509.
[64] HE W, HE X Y, ZOU M F, et al. PDE model-based boundary control design for a flexible robotic manipulator with input backlash [J]. IEEE Transactions on Control Systems Technology, 2019, 27(2): 790-797.
[65] HE X Y, SONG Y H, HAN Z J, et al. Adaptive inverse backlash boundary vibration control design for an Euler-Bernoulli beam system [J]. Journal of the Franklin Institute, 2020, 357(6): 3434-3450.
[66] QIU Z C, ZHANG W Z. Trajectory planning and diagonal recurrent neural network vibration control of a flexible manipulator using structural light sensor [J]. Mechanical Systems and Signal Processing, 2019, 132: 563-594.
[67] MEI Y F, LIU Y, WANG H. Adaptive neural network output-constraint control for a variable-length rotary arm with input backlash nonlinearity [J/OL]. IEEE Transactions on Neural Networks and Learning Systems (2021-10-21)[2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9583303. DOI: 10.1109/TNNLS.2021.3117251.
[68] ZHOU X Y, WANG H P, TIAN Y, et al. Disturbance observer-based adaptive boundary iterative learning control for a rigid-flexible manipulator with input backlash and endpoint constraint [J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(9): 1220-1241.
[69] YANG C G, HUANG D Y, HE W, et al. Neural control of robot manipulators with trajectory tracking constraints and input saturation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(9): 4231-4242.
[70] LING S, WANG H Q, LIU P X. Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 97-107.
[71] CAO F F, LIU J K. Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model [J]. Journal of the Franklin Institute, 2020, 357(2): 1026-1042.
[72] LIU Z J, LIU J K, HE W. Partial differential equation boundary control of a flexible manipulator with input saturation [J]. International Journal of Systems Science, 2017, 48(1): 53-62.
[73] MA J T, JIN D P, WEI Z T, et al. Boundary control of a flexible manipulator based on a high order disturbance observer with input saturation [J]. Shock and Vibration, 2018: 2086424.
[74] JI N, LIU J K. Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method [J]. Aerospace Science and Technology, 2018, 77: 563-572.
[75] ZHAO Z J, AHN C K. Boundary antisaturation vibration control design for a flexible Timoshenko robotic manipulator [J]. International Journal of Robust and Nonlinear Control, 2020, 30(3): 1098-1114.
[76] ZHANG S, LIU R, PENG K X, et al. Boundary output feedback control for a flexible two-link manipulator system with high-gain observers [J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 835-840.
[77] LIU Z J, LIU J K, HE W. Adaptive boundary control of a flexible manipulator with input saturation [J]. International Journal of Control, 2016, 89(6): 1191-1202.
[78] 张安彩. 欠驱动机械系统的运动控制研究[D]. 长沙: 中南大学, 2012.
[79] 陈炜, 余跃庆, 张绪平, 等. 欠驱动柔性机器人动力学建模及仿真[J]. 中国机械工程, 2006, 17(9): 931-936.
CHEN W, YU Y Q, ZHANG X P, et al. Dynamic modeling and simulation of underactuated flexible robot [J]. China Mechanical Engineering, 2006, 17(9): 931-936.
[80] 陈炜, 余跃庆, 张绪平, 等. 欠驱动柔性机器人的振动可控性分析[J]. 自动化学报, 2007, 33(4): 391-398.
CHEN W, YU Y Q, ZHANG X P, et al. Vibration controllability of underactuated flexible manipulator [J]. Acta Automatica Sinica, 2007, 33(4): 391-398.
[81] 刘建英, 王效岳, 宫金良. 柔性欠驱动机械臂动力学耦合分析[J]. 中国机械工程, 2017, 28(22): 2732-2737.
LIU J Y, WANG X Y, GONG J L. Dynamics coupling analysis of flexible underactuated manipulators [J]. China Mechanical Engineering, 2017, 28(22): 2732-2737.
[82] 何广平, 陆震, 王凤翔. 柔性欠驱动机械臂的内共振现象及应用[J]. 北京航空航天大学学报, 2005, 31(8): 913-916.
HE G P, LU Z, WANG F X. Internal resonance property of flexible under-actuated manipulators [J]. Journal of Beiji-ng University of Aeronautics and Astronautics, 2005, 31(8): 913-916.
[83] CHEN W, YU Y Q, ZHAO X H, et al. Position control of a 2DOF underactuated planar flexible manipulator [C]// Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation. Beijing: IEEE, 2011: 464-469.
[84] 陈炜, 余跃庆, 赵新华, 等. 2R欠驱动平面柔性机械臂的位置控制策略与试验研究[J]. 机械工程学报, 2013, 49(23): 80-87.
CHEN W, YU Y Q, ZHAO X H, et al. Position control strategy and experimental research of a 2R underactuated planar flexible manipulator [J]. Journal of Mechanical Engineering, 2013, 49(23): 80-87.
[85] 郭婷. 基于神经网络的欠驱动柔性机械臂的控制与仿真[J]. 电子设计工程, 2021, 29(9): 71-74.
GUO T. Control and simulation of underactuated flexible manipulator based on neural network [J]. Electronic Design Engineering, 2021, 29(9): 71-74.
[86] MENG Q X, LAI X Z, YAN Z, et al. Tip position control and vibration suppression of a planar two-link rigid-flexible underactuated manipulator [J/OL]. IEEE Transactions on Cybernetics (2020-12-01)[2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9275309. DOI: 10.1109/TCYB.2020.3035366.
[87] CAO F F, LIU J K. Partial differential equation modeling and vibration control for a nonlinear 3D rigid-flexible manipulator system with actuator faults [J]. International Journal of Robust and Nonlinear Control, 2019, 29(11): 3793-3807.
[88] ZHAO Z J, LIU Z J, HE W, et al. Boundary adaptive fault-tolerant control for a flexible Timoshenko arm with backlash-like hysteresis [J]. Automatica, 2021, 130: 109690.
[89] MA Y H, HE X Y, ZHANG S, et al. Adaptive compensation for infinite number of actuator faults and time-varying delay of a flexible manipulator system [J/OL]. IEEE Transactions on Industrial Electronics (2022-01-06)[2022-05-09]. https://ieeexplore.ieee.org/abstract/document/9673100. DOI: 10.1109/TIE.2021.3139193.
[90] ABD L S F, RASHID H A, MOHAMED Z, et al. Adaptive PID actuator fault tolerant control of single-link flexible manipulator [J]. Transactions of the Institute of Measurement and Control, 2019, 41(4): 1019-1031.
[91] CAO F F, LIU J K. Adaptive actuator fault compensation control for a rigid-flexible manipulator with ODEs-PDEs model [J]. International Journal of Systems Science, 2018, 49(8): 1748-1759.
[1] Qiu Jun-hao, Cheng Zhi-jian, Lin Guo-huai, Ren Hong-ru, Lu Ren-quan. Prescribed Performance Control for a Class of Nonlinear Pure-feedback Systems with Actuator Faults [J]. Journal of Guangdong University of Technology, 2023, 40(02): 55-63.
[2] Zeng Han-mei, Huang Zhi-feng, Lin Zhong-xiu, Kou Xiao-dong, Zhang Yun. An Investigation into Human Anticipatory Postural Adjustments on Cooperative Task Motion Control and Posture Control [J]. Journal of Guangdong University of Technology, 2019, 36(05): 25-32.
[3] Cai Ji-zu,Chen Jian,Li Mian. Improvement of Interpolation Algorithm of Servo Motor Synchronous Control Based on Motion Controllers [J]. Journal of Guangdong University of Technology, 2008, 25(3): 70-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!