Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (06): 139-146.doi: 10.12052/gdutxb.230146
• Ecology and Environmental Sciences • Previous Articles Next Articles
Lan Fang-fang1,2, Li Xian-hui1, Yang Yang2
CLC Number:
[1] WANG S J, YUAN P, LI D, et al. An overview of ocean renewable energy in China [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 91-111. [2] LIU C Z, RAO Z H. Challenges in various thermal energy storage technologies [J]. Science Bulletin, 2017, 62(4): 231-233. [3] PIECHOWICZ M, ABNEY C W, ZHOU X, et al. Design, synthesis, and characterization of a bifunctional chelator with ultrahigh capacity for uranium uptake from seawater simulant [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4170-4178. [4] ENDRIZZI F, LEGGETT C J, RAO L F. Scientific basis for efficient extraction of uranium from seawater. I: understanding the chemical speciation of uranium under seawater conditions [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4249-4256. [5] DONIA A M, ATIA A A, MOUSSA E M, et al. Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins [J]. Hydrometallurgy, 2009, 95(3-4): 183-189. [6] 刘埃平, 钟子川. 铀的地球化学特征及其在油气勘探中的应用[J]. 石油学报, 1999, 20(6): 32-37. LIU A P, ZHONG Z C. Geochemical characteristics of uranium and the application to oil & gas exploration [J]. Acta Petrolei Sinica, 1999, 20(6): 32-37. [7] WANG Y, WANG J J, WANG J, et al. Efficient recovery of uranium from saline lake brine through photocatalytic reduction [J]. Journal of Molecular Liquids, 2020, 308: 113007. [8] KRAKOWSKI R A. Presentations of the international conference on preparing the ground for renewal of nuclear power[M]// KURSUNOGLU B N, MINTZ S L, PERLMUTTER A, et al. Preparing the Ground for Renewal of Nuclear Power. Boston: Springer, 1999: 167-193. [9] The Nuclear Energy Agency and the International Atomic Energy Agency. Uranium 2020: resources, production and demand [J]. Ux Weekly, 2021, 35(2): 1-4. [10] 熊洁, 文君, 胡胜, 等. 中国海水提铀研究进展[J]. 核化学与放射化学, 2015, 37(5): 257-265. XIONG J, WEN J, HU S, et al. Progress in extraction uranium from seawater of China [J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 257-265. [11] 李昊, 文君, 汪小琳. 中国海水提铀研究进展[J]. 科学通报, 2018, 63(Z1): 481-494. LI H, WEN J, WANG X L. Research advances on extracting uranium from seawater in China [J]. Chinese Science Bulletin, 2018, 63(Z1): 481-494. [12] 陈树森, 任宇, 丁海云, 等. 海水提铀的研究进展[J]. 原子能科学技术, 2015, 49(3): 415-423. CHEN S S, REN Y, DING H Y, et al. Research progress of extraction uranium from seawater [J]. Atomic Energy Science and Technology, 2015, 49(3): 415-423. [13] DAVIES R V, KENNEDY J, MCILROY R W, et al. Extraction of uranium from sea water [J]. Nature, 1964, 203(4950): 1110-1115. [14] 冯健, 何桂强, 魏艳霞, 等. 海水提铀吸附材料研究进展[J]. 化工新型材料, 2022, 50(3): 1-7. FENG J, HE G Q, WEI Y X, et al. Research progress on adsorption material for U extraction from seawater [J]. New Chemical Materials, 2022, 50(3): 1-7. [15] TUREKIAN K K, HOLLAND H D. Treatise on geochemistry[M]. Amsterdam: Elsevier Science, 2003. [16] TIAN G X, TEAT S J, ZHANG Z Y, et al. Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime [J]. Dalton Transactions, 2012, 41(38): 11579-11586. [17] KIM J, OYOLA Y, TSOURIS C, et al. Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments [J]. Industrial & Engineering Chemistry Research, 2013, 52(27): 9433-9440. [18] DRYSDALE J A, BUESSEIER K O. Uranium adsorption behaviour of amidoximated fibers under coastal ocean conditions [J]. Progress in Nuclear Energy, 2020, 119: 103170. [19] HU J T, MA H J, XING Z, et al. Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4118-4124. [20] BAI Z, LIU Q, ZHANG H, et al. Anti-biofouling and water—stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater [J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18012-18022. [21] MA D, XU X, LI Z, et al. Nano emulsion assembly toward vaterite mesoporous CaCO3 for high-efficient uranium extraction from seawater [J]. Journal of Hazardous Materials, 2022, 432: 128695. [22] LIU M X, DONG F Q, YAN X Y, et al. Biosorption of uranium by saccharomyces cerevisiae and surface interactions under culture conditions [J]. Bioresource Technology, 2010, 101(22): 8573-8580. [23] FENG M L, SARMA D, QI X H, et al. Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate [J]. Journal of the American Chemical Society, 2016, 138(38): 12578-12585. [24] LEE S, KANG U, PIAO G, et al. Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes [J]. Applied Catalysis B:Environmental, 2017, 207: 35-41. [25] SODAYE H, NISAN S, POLETIKO C, et al. Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants [J]. Desalination, 2009, 235(1-3): 9-32. [26] WANG Y, ZHANG Y, LI Q, et al. Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater [J]. Carbohydrate Polymers, 2020, 245: 116627. [27] 白震媛, 许恒斌, 王君, 等. 海水提铀的最新进展[J]. 黑龙江大学自然科学学报, 2020, 37(1): 61-70. BAI Z Y, XU H B, WANG J, et al. New development of uranium extraction from sea water [J]. Journal of Natural Science of Heilongjiang University, 2020, 37(1): 61-70. [28] 金可勇, 俞三传, 高从阶. 从海水中提取铀的发展现状[J]. 海洋通报, 2001, 20(2): 78-82. JIN K Y, YU S C, GAO C J. Present situation of uranium recovery from seawater [J]. Marine Science Bulletin, 2001, 20(2): 78-82. [29] 王莹, 李倩, 曹丽霞, 等. 生物质基铀吸附材料的研究进展[J]. 化工学报, 2021, 72(3): 1205-1216. WANG Y, LI Q, CAO L X, et al. Progress of biomass-based materials for uranium adsorption [J]. CIESC Journal, 2021, 72(3): 1205-1216. [30] YAMASHITA H, OZAWA Y, NAKAJIMA F, et al. The collection of uranium from sea water with hydrous metal oxide. II. The mechanism of uranium adsorption on hydrous titanium (IV) oxide [J]. Bulletin of the Chemical Society of Japan, 1980, 53(1): 1-5. [31] LI X Y, ZHANG M, LIU Y B, et al. Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI) [J]. Water Quality, Exposure and Health, 2013, 5(1): 31-40. [32] DONG Z, ZHANG Z, ZHOU R. Construction of oxidized millimeter-sized hierarchically porous carbon spheres for U(VI) adsorption [J]. Chemical Engineering Journal, 2020, 386: 123944. [33] GIANNAKOUDAKIS D A, ANASTOPOULOS I, BARCZAK M, et al. Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most [J]. Journal of Hazardous Materials, 2021, 413: 125279. [34] AHMAD M, WANG J Q, YANG Z T, et al. Ultrasonic-assisted preparation of amidoxime functionalized silica framework via oil-water emulsion method for selective uranium adsorption [J]. Chemical Engineering Journal, 2020, 389: 124441. [35] WANG Y Q, ZHANG Z B, LIU Y H, et al. Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon [J]. Chemical Engineering Journal, 2012, 198: 246-253. [36] LIU S, WANG Z, LU Y X, et al. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent [J]. Applied Catalysis B:Environmental, 2021, 282: 119523. [37] CHEN M Q, LI S S, LI L P, et al. Memory effect induced the enhancement of uranium(VI) immobilization on low-cost MgAl-double oxide: Mechanism insight and resources recovery [J]. Journal of Hazardous Materials, 2021, 401: 123447. [38] LI M X, LIU H B, CHEN T H, et al. Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: performance and mechanism [J]. Science of the Total Environment, 2020, 703: 135604. [39] AGRAWAL Y K, SHRIVASTAV P, MENON S K. Solvent extraction, separation of uranium(VI) with crown ether [J]. Separation and Purification Technology, 2000, 20(2-3): 177-183. [40] WANG F H, LI H P, LIU Q, et al. A graphene oxide/amidoxime hydrogel for enhanced uranium capture [J]. Scientific Reports, 2016, 6(1): 19367. [41] XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater [J]. Energy & Environmental Science, 2019, 12(6): 1979-1988. [42] CHENG G, ZHANG A R, ZHAO Z W, et al. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity [J]. Science Bulletin, 2021, 66(19): 1994-2001. [43] AO J X, HAN J G, XU X, et al. Enhanced performance in uranium extraction by quaternary ammonium-functionalized amidoxime-based fibers [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5828-5837. [44] XU L, CHEN Y, SU W, et al. Synergistic adsorption of U(VI) from seawater by Mxene and amidoxime mixed matrix membrane with high efficiency [J]. Separation and Purification Technology., 2023, 309: 123024. [45] GÓRKA J, MAYES R T, BAGGETTO L, et al. Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater [J]. Journal of Materials Chemistry A, 2013, 1(9): 3016-3026. [46] YUAN Y H, NIU B Y, YU Q H, et al. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets [J]. Angewandte Chemie International Edition, 2020, 59(3): 1220-1227. [47] ZHAO S, YUAN Y, YU Q, et al. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater [J]. Angewandte Chemie International Edition, 2019, 131(42): 15121-15127. [48] YAGHI M O, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels [J]. Journal of the American Chemical Society, 2002, 117(41): 10401-10402. [49] 朱雅静, 徐岩, 简美鹏, 等. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. ZHU Y J, XU Y, JIAN M P, et al. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. [50] CARBONI M, ABNEY C W, LIU S B, et al. Highly porous and stable metal-organic frameworks for uranium extraction [J]. Chemical Science, 2013, 4(6): 2396-2402. [51] LIU T, ZHANG X, GU A, et al. In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater [J]. Chemical Engineering Journal, 2022, 433: 134346. [52] GUTOV O V, HEVIA M G, ESCUDERO-ADAN E C, et al. Metal-Organic Framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks [J]. Inorganic Chemistry, 2015, 54(17): 8396-8400. [53] CHEN L, BAI Z L, ZHU L, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework [J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32446-32451. [54] ZHAO Z W, LEI R C, ZHANG Y Z, et al. Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity [J]. Journal of Molecular Liquids, 2022, 367: 120514. [55] YUAN Y H, FENG S W, FENG L J, et al. A bio-inspired nano-pocket spatial structure for targeting uranyl capture [J]. Angewandte Chemie International Edition, 2020, 59(11): 4262-4268. [56] FENG L J, WANG H, FENG T T, et al. In situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater [J]. Angewandte Chemie International Edition, 2022, 134(13): e202101015. [57] LIU D H, ZHONG C L. Understanding gas separation in metal-organic frameworks using computer modeling [J]. Journal of Materials Chemistry, 2010, 20(46): 10308-10318. [58] LIN Z J, LU J, HONG M C, et al. Metal-Organic Frameworks based on flexibleligands (FL-MOFs): structures and applications [J]. Chemical Society Reviews, 2014, 43(16): 5867-5895. [59] WANG M, FENG L, LUO G, et al. Ultrafast extraction of uranium from seawater using photosensitized biohybrid system with bioinspired cascaded strategy [J]. Journal of Hazardous Materials, 2023, 445: 130620. [60] LI C, WANG M L, LUO X G. Uptake of uranium from aqueous solution by nymphaea tetragona georgi: the effect of the accompanying heavy metals [J]. Applied Radiation and Isotopes, 2019, 150: 157-163. [61] YUAN Y H, YU Q H, YANG S, et al. Ultrafast recovery of uranium from seawater by bacillus velezensis strain UUS-1 with innate anti-biofouling activity [J]. Advanced Science, 2019, 6(18): 1900961. [62] HE D, TAN N, LUO X, et al. Preparation, uranium (VI) absorption and reuseability of marine fungus mycelium modified by the bis-amidoxime-based groups[J] Radiochimica Acta, 2019, 108(1): 37-49. [63] ZHOU L, BOSSCHER M, ZHANG, C, et al. A protein engineered to bind uranyl selectively and with femtomolar affinity [J]. Nature Chemistry, 2014, 6: 236-241. [64] YANG L, XIAO H, QIAN, Y, et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater [J]. Nature Sustainability, 2022, 5: 71-80. [65] YUAN Y H, YU Q H, WEN J, et al. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber [J]. Angewandte Chemie International Edition, 2019, 58(34): 11785-11790. [66] YU Q H, YUAN Y H, FENG L J, et al. Spidroin-inspired, high-strength, loofah-shaped protein fiber for capturing uranium from seawater [J]. Angewandte Chemie International Edition, 2020, 59(37): 15997-16001. [67] AGUILA B, SUN Q, CASSADY H, et al. Design strategies to enhance amidoxime chelators for uranium recovery [J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30919-30926. [68] SEKO N, KATAKAI A, HASEGAWA S, et al. Aquaculture of uranium in seawater by a fabric-adsorbent submerged system [J]. Nuclear Technology, 2003, 144(2): 274-278. [69] LADSHAW A P, DAS S, LIAO W P, et al. Experiments and modeling of uranium uptake by amidoxime-based adsorbent in the presence of other ions in simulated seawater [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4241-4248. [70] GILL G A, KUO L J, JANKE C J, et al. The uranium from seawater program at the pacific northwest national laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4264-4277. [71] XIE Y, LIU Z Y, GENG Y Y, et al. Uranium extraction from seawater: material design, emerging technologies and marine engineering [J]. Chemical Society Reviews, 2023, 52(1): 97-162. [72] 李子明, 牛玉清, 宿延涛, 等. 海水提铀技术最新研究进展[J]. 核化学与放射化学, 2022, 44(3): 233-245. LI Z M, NIU Y Q, SU Y T, et al. Latest research progress of uranium extraction from seawater [J]. Journal of Nuclear and Radiochemistry, 2022, 44(3): 233-245. [73] LEJARS M, MARGAILLAN A, BRESSY C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings [J]. Chemical Reviews, 2012, 112(8): 4347-4390. [74] PARK J, GILL G A, STRIVENS J E, et al. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents [J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4328-4338. [75] ZHU J, ZHANG H, CHEN R, et al. An anti-algae adsorbent for uranium extraction: i-arginine functionalized graphene hydrogel loaded with Ag nanoparticles [J]. Journal of Colloid and Interface Science, 2019, 543: 192-200. [76] LI N, GAO P, CHEN H, et al, Amidoxime modified Fe304@TiO2 particles for antibacterial and efficient uranium extraction from seawater[J]. Chemosphere, 2022, 287: 132137. [77] MA H C, ZHANG F, LI Q Y, et al. Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(VI) recovery [J]. RSC Advances, 2019, 9(32): 18406-18414. [78] LI H, HE N N, CHENG C, et al. Antimicrobial polymer contained adsorbent: a promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater [J]. Chemical Engineering Journal, 2020, 388: 124273. [79] ZHANG Y, CAI T, ZHAO Z, et al. Poly (amidoxime) -graft-magnetic chitosan for highly efficient and selective uranium extraction from seawater [J]. Carbohydrate Polymers, 2023, 301: 120367. [80] KUO L J, PAN H B, WAI C M, et al. Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction [J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11603-11611. |
No related articles found! |
|